Учебный курс

Теория и практика параллельных вычислений

1. Среда выполнения прикладных программ в Windows NT/2000/XP/2003 (8 часов)

2.1. Основные понятия и определения

Понятия "ресурс", "процесс", "поток".

Недетализированная архитектура Windows (здесь и далее - семейство NT/2000/XP/2003). Описание ключевых компонент.

Понятие объекта ядра. Работа с объектами ядра.

2.2. Управление памятью

Поддержка виртуальных адресных пространств посредством использования страничного преобразования. Страничный сбой.

Сегментно-страничная модель адресации.

Структура виртуального адресного пространства процесса в Windows.

Операции над структурой ВАП.

2.3. Процессы и потоки. Операции над ними.

Процесс. Структуры данных, связанные с процессом.

Действия ОС при создании процесса, завершении процесса.

Поток. Структуры данных, связанные с потоком.

Действия ОС при создании потока, завершении потока.

Диаграмма состояний потока в Windows.

Диспетчеризация в Windows.

Работа с волокнами.

2.4. Синхронизация выполнения потоков

Задача взаимного иключения. Решения на общей памяти (Алгоритмы Деккера, Петерсона). Решения с использованием операций swap и test&set.

Понятия семафора. Задачи "Поставщик-потребитель", "Читатели-писатели".

Синхронизация с использованием CRITICAL SECTION.

Синхронизация с использованием объектов ядра (процессы, потоки, задания, файлы, консольный ввод, уведомления об изменении файлов, события, ожидаемые таймеры, семафоры, мьютексы).

Interlocked-функции.

2.5. Передача данных между потоками/процессами

Файлы, отображаемые в память. Разделяемая память.

Очередь сообщений потока.

Локальная память потока.

2. Разработка параллельных программ для вычислительных систем с распределенной памятью с использованием интерфейса передачи сообщений MPI (4 часа)

2.1. Введение

Основы подхода. История разработки стандарта МРІ. Основы МРІ.

Основные операции. Оценка времени выполнения.

Коллективные операции.

Режимы передачи сообщений. Проверка завершения операций. Буферизация сообщений.

Примеры.

2.2. Конструирование производных типов данных в МРІ

Базовые типы данных МРІ. Понятие производного типа данных. Характеристики производного типа данных.

Общий способ конструирования. Дополнительные способы конструирования (Непрерывный, Векторный, Н-Векторный, Индексный, Н-Индексный, Упакованный). Правила соответствия типов.

Рекомендации по выбору способа конструирования

2.3. Систематика процессов (коммуникаторы и группы)

Методы работы с группами и коммуникаторами. Примеры.

2.4. Управление топологиями

Использование виртуальных топологий

Применение топологии в виде решетки

Пример: Решение задачи Пуассона

3. Разработка параллельных программ для вычислительных систем с общей памятью с использованием технологии OpenMP (4 часа)

3.1. Введение

OpenMP как стандарт параллельного программирования для систем с общей памятью. Принципы организации параллелизма с использованием OpenMP.

3.2. Основные директивы ОрепМР

Формат записи. Области видимости. Типы директив.

Определение параллельной области - директива parallel.

Распределение вычислений между потоками - директивы DO/for, sections, single

Синхронизация - директивы master, critical, barrier, atomic, flush, ordered, threadprivate

Управление областью видимости данных - параметры директив **shared**, **private**, **firstprivate**, **lastprivate**, **copyin**, **default**, reduction.

Совместимость директив и их параметров

3.3. Библиотека функций ОрепМР

Функции для контроля/запроса параметров среды исполнения.

Функции синхронизации.

Переменные среды исполнения.

Реализации ОрепМР. Информационные ресурсы.

4. Учебно-практическая задача: Решение дифференциальных уравнений в частных производных (2 часа)

- 4.1. Введение
- 4.2. Последовательные методы решения задачи Дирихле
- 4.3. Организация параллельных вычислений для систем с общей памятью
- 4.4. Организация параллельных вычислений для систем с распределенной памятью

5. Рекомендации и методики разработки новых и распараллеливания существующих программ (8 часов)

Теоретическая часть

- 5.1. О предмете. Последовательный алгоритм, "параллельный алгоритм", последовательная программа, параллельная программа. Закон Амдаля.
- 5.2. О целях. Зачем создавать "параллельные" программы? Ускорение. Увеличение объема данных. Увеличение объема вычислений.
- 5.3. О способах. Как создавать параллельные программы? Модификация существующих или создание новых алгоритмов. Пример: параллельная сортировка. Модификация существующих последовательных программ. Пример: матричное умножение.
- 5.4. О средствах. Выбор "платформы" для распараллеливания. Языки, библиотеки, компиляторы, среды параллельного программирования, "ручное" программирование.
- 5.5. О достижении целей распараллеливания. Схожесть и отличия процессов "распараллеливания" и "оптимизации" программ. Плюсы и минусы.
- 5.6. О порядке. Последовательная программа, оптимизированная программа, параллельная программа.
- 5.7. О методике. Список вопросов, на которые нужно ответить, прежде чем создавать параллельную программу.
- 5.8. О процессе. Общий порядок действий при создании параллельной программы.
- 5.9. О проблемах. Неустойчивость работы. Ошибки компиляторов. Неустойчивость вычислений. Работа с динамической памятью.

Практическая часть

5.10. Обзор и сравнение реализаций MPI под Windows.

- 5.11. Использование MPI в разработке программ в MS VS 6.0 (на примере реализации MPICH). Установка, настройка среды, настройка проекта. Запуск на исполнение.
- 5.12. Использование OpenMP в разработке программ в MS VS 6.0. Настройка проекта.
- 5.13. Пример. Создание параллельных версий алгоритма вывода для байесовых вероятностных сетей (Junction Tree Inference).

6. Отладка и профилирование параллельного кода (8 часов)

Теоретическая часть

- 6.1. О предмете. Что есть отладка? Отличия в процессе отладки параллельного кода. Что есть профилирование? Зачем профилировать параллельный код?
- 6.2. О средствах. Что должны "уметь" инструменты параллельной отладки и профилирования? Текущее состояние дел.
- 6.3. Примеры МРІ и ОрепМР программ с ошибками. Симптомы, анализ, устранение.
- 6.4. Отладка параллельного кода в последовательном исполнении. Режимы эмуляции (localonly, set_num_threads). Примеры.
- 6.5. Общие соображения об отладке параллельного кода в параллельном исполнении. Некоторые типичные ошибки в MPI и OpenMP программах.
- 6.6. Общие соображения о профилировании параллельного кода. Типичные "узкие" места в MPI и OpenMP программах. Примеры.

Практическая часть

- 6.7. Краткий обзор существующих инструментов отладки и профилирования.
- 6.8. Профилирование MPI-программ с помощью MPE. Обзор, установка, настройка, подключение к проекту в MS VS 6.0, пример(ы) использования.
- 6.9. Отладка и профилирование OpenMP-программ с помощью Intel® Thread Checker и Thread Profiler. Обзор, установка, настройка, подключение к проекту в MS VS 6.0, пример(ы) использования.

Литература

- 1. Э.Таненбаум. Современные операционные системы. 2-е издание. СПб: Питер, 2002.
- 2. 2. Дж.Рихтер. Windows для профессионалов (Программирование в Win32 API для Windows NT 3.5 и Windows 95). Второе издание. М: "Русская Редакция", 1995.
- 3. З. Дж.Рихтер. Windows для профессионалов (Создание эффективных Win32-приложений с учетом специфики 64-разрядной версии Windows). Четвертое издание. М: "Русская Редакция"; пер. с англ. СПб: "Питер", 2001.
- 4. 4. Д.Соломон, М.Руссинович. Внутреннее устройство Microsoft Windows 2000. М: "Русская Редакция"; пер. с англ. СПб: "Питер", 2001.
- 5. 5. В.Г.Олифер, Н.А.Олифер. Сетевые операционные системы. СПб: "Питер", 2001.
- 6. Гергель В.П., Стронгин Р.Г. Основы параллельных вычислений для многопроцессорных вычислительных систем. 2 изд.- Н.Новгород, ННГУ, 2003;
- 7. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. СПб.: БХВ-Петербург, 2002
- 8. Немнюгин С., Стесик О. Параллельное программирование для многопроцессорных вычислительных систем СПб.: БХВ-Петербург, 2002
- 9. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J. Parallel Programming in OpenMP. Morgan Kaufinann Publishers, 2000

- 10. Pacheco, S. P. Parallel programming with MPI. Morgan Kaufmann Publishers, San Francisco. 1997.
- 11. Quinn J.M. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Companies, Inc., 2004
- 12. http://www.parallel.ru сайт Лаборатории Параллельных информационных технологий НИВЦ МГУ, содержит массу информации по разным областям параллельного программирования
- 13. http://www.parallel.ru сайт Лаборатории Параллельных информационных технологий НИВЦ МГУ, содержит массу информации по разным областям параллельного программирования, в том числе обзоры различных инструментальных средств параллельного программирования
- 14. http://www.intel.com/software/products/index.htm информация о софт. продуктах компании Intel, в том числе средства профилирования параллельных программ
- 15. http://www-unix.mcs.anl.gov/mpi/mpich информация по MPICH, в том числе по MPE.

Авторы курса: Гергель В.П., Линев А.В., Сысоев А.В.