
Chair of Software Engineering

Concurrent Programming Is Easy 

Bertrand Meyer
ETH Zurich & Eiffel Software

Concurrent Programming School
Nijny Novgorod, October 2010

1



2

The issue

Concurrency everywhere:

 Multithreading

 Multitasking

 Networking, Web services, Internet

Can we bring concurrent programming
to the same level

of simplicity and convenience
as sequential programming?

 Multicore
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SCOOP mechanism

Simple Concurrent Object-Oriented Programming

Evolved through last decade; CACM (1993) and chap. 32 of Object-
Oriented Software Construction, 2nd edition, 1997

Prototype implementation at ETH  (since 2007); production 
implementation at Eiffel Software, released in steps starting 
November 2010

Most up-to-date descriptions:
 Piotr Nienaltowski’s 2007 ETH PhD dissertation, see 

http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf

 Benjamin Morandi, Sebastian S. Bauer and Bertrand Meyer SCOOP - A 
contract-based concurrent object-oriented programming model, in Proc. 
of LASER summer school on Software Engineering 2007/2008, ed. P. 
Müller, LNCS 6029, Springer-Verlag, July 2010, pages 41-90, see 
http://se.ethz.ch/~meyer/publications/concurrency/scoop_laser.pdf

http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf
http://se.ethz.ch/~meyer/publications/concurrency/scoop_laser.pdf
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Concurrent programming is supposed to be hard…



What we  write in sequential code

transfer (source, target: separate ACCOUNT;
value: INTEGER)

require
source.balance >= value

do
source.withdraw (value)
target.deposit (value)

ensure
source.balance = old source.balance - value
target.balance = old target.balance + value

end
invariant

balance >= 0
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A better version

transfer (source, target: separate ACCOUNT;
value: INTEGER)

require
source.balance >= value

do
source.withdraw (value)
target.deposit (value)

ensure
source.balance = old source.balance - value
target.balance = old target.balance + value

end
…
invariant

balance >= 0
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Make this concurrent!

transfer (source, target: separate ACCOUNT;
value: INTEGER)

require
source.balance >= value

do
source.withdraw (value)
target.deposit (value)

ensure
source.balance = old source.balance - value
target.balance = old target.balance + value

end
…
invariant

balance >= 0
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put (b :      [G ] ; v : G )

-- Store v into b.
require

not b.is_full
do

…
ensure

not b.is_empty
end

QUEUE  BUFFER

my_queue : [T ]

… 

if not my_queue.is_full then

put (my_queue, t )

end

BUFFERQUEUE  

put

item, remove
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Previous advances in programming

“Structured 
programming” 

“Object 
technology” 

Use higher-level abstractions  
Helps avoid bugs  

Transfers tasks to implementation  

Lets you do stuff you couldn’t before NO 

Has well-understood math basis  

Doesn’t require understanding that basis  

Removes restrictions NO


Adds restrictions  

Permits less operational reasoning  
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Then and now

Sequential programming:

Used to be messy

Still hard but key 
improvements:

 Structured programming
 Data abstraction & 

object technology
 Design by Contract
 Genericity, multiple 

inheritance
 Architectural techniques

Concurrent programming:

Used to be messy

Example: threading models in 
most popular approaches

Development level: 
sixties/seventies

Only understandable through 
operational reasoning

Still messy
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The chasm

Theoretical models, process calculi… Elegant theoretical 
basis, but

 Little connection with practice (some exceptions, e.g. 
BPEL)

 Handle concurrency aspects only

Practice of concurrent & multithreaded programming

 Little influenced by above

 Low-level, e.g. semaphores

 Poorly connected with rest of programming model
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Wrong (in my opinion) assumptions

“Objects are naturally concurrent ” (Milner)

 Many attempts, often based on “Active objects”
(a self-contradictory notion)

 Lead to artificial issue of “Inheritance anomaly”

“Concurrency is the basic scheme, sequential programming 
a special case ” (many)

 Correct in principle, but in practice we understand 
sequential best
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Dining philosophers

class PHILOSOPHER inherit
PROCESS

rename
setup as getup

redefine step end

feature {BUTLER}
step

do
think ; eat (left, right)

end

eat (l, r : separate FORK)
-- Eat, having grabbed l and r.

do … end
end
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Typical traditional code
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Object-oriented computation

To perform a computation is

 To apply certain actions

 To certain objects

 Using certain processors

Processor

Actions Objects
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What makes an application concurrent?

Processor:
Thread of control supporting sequential execution of 
instructions on one or more objects

Can be implemented as:

 Computer CPU

 Process

 Thread

 AppDomain (.NET) …

Will be mapped to computational resources

Processor

Actions Objects
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put (b :      [G ] ; v : G )

-- Store v into b.
require

not b.is_full
do

…
ensure

not b.is_empty
end

BUFFER

my_queue : [T ]

… 

if not my_queue.is_full then

put (my_queue, t )

end

BUFFER

put

item, remove
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Reasoning about objects: sequential

{INV and Prer } bodyr {INV and Postr }

___________________________________

{Prer’ }  x.r (a) {Postr’ }

Priming represents 
actual-formal 

argument substitution

Only n proofs if n exported routines!
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In a concurrent context

Only n proofs if n exported routines?

{INV and Prer } bodyr {INV and Postr }
___________________________________

{Prer’}  x.r (a) {Postr’}

Client 1

r1

Client 2

r2

Client 3

r3

No overlapping!
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SCOOP rules

 One processor per object: “handler”

 At most one feature (operation) active on an object at 
any time
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Feature call: sequential

x.r (a)

Processor

Client Supplier

previous

x.r (a)

next

r (x : A)
do

…
end
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Feature call: asynchronous

Client Supplier

previous

x.r (a)

next

r (x : A)
do

…
end

Client’s handler Supplier’s handler
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The fundamental difference

To wait or not to wait:

 If same processor, synchronous

 If different processor, asynchronous

Difference must be captured by syntax:

 x: T

 x: separate T -- Potentially different processor

Fundamental semantic rule: x.r (a) waits for non-
separate x, doesn’t wait for separate x.
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Consistency rules: avoiding traitors

nonsep : T

sep : separate T

nonsep := sep

nonsep.p (a)

Traitor!
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Trusting what you read 

my_buffer : separate QUEUE [T ]

…

my_buffer.put (a)

… Instructions not affecting the buffer…

y := my_buffer.item ?



26

Access control policy

Require target of separate call to be formal 
argument of enclosing routine:

push (b : separate QUEUE [T ]; value : T )

-- Add value, FIFO-style, to b.

do

b.push (value)

end
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Access control policy

Target of a separate call must be formal 
argument of enclosing routine:

put (b: separate QUEUE [T ]; value : T)

-- Store value into buffer.

do

b.put (value)

end

To use separate object:
my_buffer : separate QUEUE [INTEGER ]

create my_buffer

put (my_buffer , 10) 
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Separate argument rule

The target of a separate call

must be an argument of the enclosing routine

Separate call: x.f (...) where x is separate
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Wait rule

A routine call with separate arguments

will execute when all corresponding processors 
are available

and hold them exclusively
for the duration of the routine



30

Dining philosophers

class PHILOSOPHER inherit
PROCESS

rename
setup as getup

redefine step end

feature {BUTLER}
step

do
think ; eat (left, right)

end

eat (l, r : separate FORK)
-- Eat, having grabbed l and r.

do … end
end
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Resynchronization

No explicit mechanism needed for client to 
resynchronize with supplier after separate call.

The client will wait only when it needs to:

x.f
x.g (a)

y.f
…

value := x.some_query

Lazy wait (Denis Caromel, wait by necessity)

Wait here!
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put (buf : BUFFER [INTEGER ] ; v : INTEGER)
-- Store v into buffer.

require

not buf.is_full
v > 0

do

buf.put (v)
ensure

not buf.is_empty
end

...
put (my_buffer, 10 )

Contracts
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put (b :      [G ] ; v : G )

-- Store v into b.
require

not b.is_full
do

…
ensure

not b.is_empty
end

BUFFER

my_queue : [T ]

… 

if not my_queue.is_full then

put (my_queue, t )

end

BUFFER

put

item, remove



34

put (buf : BUFFER [INTEGER ] ; v : INTEGER)
-- Store v into buffer.

require

not buf.is_full
v > 0

do

buf.put (v)
ensure

not buf.is_empty
end

...
put (my_buffer, 10 )

Contracts

Precondition becomes 
wait condition
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Full synchronization rule

A call with separate arguments waits until:

The corresponding objects are all available

 Preconditions hold

“Separate call”:

x.f (a) -- where a is separate
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Which semantics applies?

put (buf : separate BUFFER [INTEGER]; i : INTEGER)  

require

not buf.is_full

i > 0

do

buf.put (i)
end

Wait condition

Correctness 
condition

my_buffer : separate BUFFER [INTEGER]

put (my_buffer, 10)
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Generalized semantics of preconditions

 Sequentiality is a special case of concurrency.

 Wait semantics always applies.

 Wait semantics boils down to correctness semantics for 
non-separate preconditions. 

 Smart compiler can detect some cases
 Other cases detected at run time

Distinction between controlled and uncontrolled rather 
than separate and non-separate. 



38

What about postconditions?

Should we wait for 
zurich.is_ready?

spawn_two_activities (loc1, loc2: separate LOCATION)

do
loc1.do_job
loc2.do_job

ensure
loc1.is_ready
loc2.is_ready

end

spawn_two_activities (zurich, novgorod)

do_local_stuff

get_result (zurich)

zurich, novgorod : separate LOCATION
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Reasoning about objects: sequential

{INV and Prer } bodyr {INV and Postr }

___________________________________

{Prer’ }  x.r (a) {Postr’ }

Only n proofs if n exported routines!
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Refined proof rule (partial correctness)

{INV  Prer (x)} bodyr {INV  Postr (x)} 

{Prer (a cont)}  e.r (a)  {Postr (a cont)}

Hoare-style sequential reasoning

Controlled expressions (known statically as part of the 
type system) are:

 Attached (statically known to be non-void)

 Handled by processor locked in current context
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Elevator example architecture

For maximal concurrency, all objects are separate

Inheritance

Client
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Other aspects

What if a separate call, e.g. in 

r (a : separate T)
do

a.f
a.g
a.h

end

causes an exception?
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Status

 All of SCOOP except exceptions and duels 
implemented

 Implementation available for download
 Numerous examples available for download

se.ethz.ch/research/scoop.html

http://se.ethz.ch/research/scoop.html
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Current developments

Implementation: integrating into EiffelStudio
Performance evaluation

Theory:
 Deadlock prevention and detection
 Less restrictive model (see STM)
 Transactions
 Full-fledged semantics
 Distributed SCOOP, Web Services
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Why SCOOP?

 Simple (one new keyword) yet powerful

 Easier and safer than common concurrent 
techniques, e.g. Java Threads

 Full concurrency support

 Full use of O-O and Design by Contract

 Retains ordinary thought patterns, modeling power 
of O-O

 Supports  wide range of platforms and concurrency 
architectures

 Concurrency should be easy: programmers need to 
sleep better!


