ETH.c O

Chair of Software Engineering

Concurrent Programming Is Easy

Bertrand Meyer
ETH Zurich & Eiffel Software

Concurrent Programming School
Nijny Novgorod, October 2010

The issue @

Concurrency everywhere:
> Multithreading
> Multitasking
> Networking, Web services, Internet
> Multicore

Can we bring concurrent programming
to the same level
of simplicity and convenience
as sequential programming?

SCOOP mechanism “

Simple Concurrent Object-Oriented Programming

Evolved through last decade; CACM (1993) and chap. 32 of Object-
Oriented Software Construction, 2 edition, 1997

Prototype implementation at ETH (since 2007); production
implementation at Eiffel Software, released in steps starting
November 2010

Most up-to-date descriptions:

> Piotr Nienaltowski's 2007 ETH PhD dissertation, see
http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf

> Benjamin Morandi, Sebastian S. Bauer and Bertrand Meyer SCOOP - A
contract-based concurrent object-oriented programming model, in Proc.
of LASER summer school on Software Engineering 2007/2008, ed. P.
Miiller, LNCS 6029, Springer-Verlag, July 2010, pages 41-90, see
http://se.ethz.ch/~meyer/publications/concurrency/scoop laser.pdf

http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf
http://se.ethz.ch/~meyer/publications/concurrency/scoop_laser.pdf

Concurrent programming is supposed to be hard...

0

Listing 4.33: Variables for Tanenbaum's solution

1 state - ["thinking’] * b
2 gsem - [Semaphore(0) for i in range(5)]
3 mutex = Semaphore(l)

The nitial value of atate i= a list of 5 copies of *thinking’. sem is a list of
5 semaphores with the initial value 0. Here is the code:

Listing 4.34: Tanenbanm's solution

1 def get_fork(i):

2 mitex.wait ()

3 state[i] = ’hungry’

4 test (i)

5 mutex.signal ()

& gem[1] .wait ()

7

8 def put_fork(i}:

9 mutex.wait i)
10 state[i] = 'thinking®
11 testiright{i))
12 teat(left(i))
13 muitex.signal ()
14
15 def test(i):
16 if state[i] =-- 'hungry’ and
17 state (left (i)) !-= ‘eating’ and
1= state (right (i)) != ‘eating’:
19 atate[i] = ‘eating’
20 sem[i] . aignal ()

What we write in sequential code

transfer (source, target: ACCOUNT;
value: INTEGER)

do
source.withdraw (value)
target.deposit (value)

end

A better version

transfer (source, target: ACCOUNT;
value: INTEGER)
require

source.balance >= value
do
source.withdraw (value)
target.deposit (value)
ensure
source.balance = old source.balance - value
target.balance = old target.balance + value

end

invariant
balance >= O

Make this concurrent!

transfer (source, target: separate ACCOUNT;
value: INTEGER)

require
source.balance >= value

do
source.withdraw (value)
target.deposit (value)

ensure
source.balance = old source.balance - value
target.balance = old target.balance + value

end

invariant
balance >= O

rpuf “

ﬁ_queue C BURRER [T]

/tem, remove

if not my_qgueuve.is_full then

/put(b: QUERER (6] v: 6)\

-- Store vinto b.

require put (my_quevue, 1)
not b.is_full @i

ensure

S

\\e iy not b./is_empty /

Previous advances in programming)

"Structured ~ "Object
programming” technology”

Use higher-level abstractions

Helps avoid bugs

Transfers tasks to implementation

Lets you do stuff you couldn't before

Removes restrictions

Adds restrictions

Has well-understood math basis

Doesn't require understanding that basis

SN ININIGIE NN
AN N NI N N NI A NN AN

Permits less operational reasoning

Then and now

Sequential programming: Concurrent programming:
Used to be messy Used to be messy
Still hard but key Still messy
improvements:
> Structured programming Example: threading models in
> Data abstraction & most popular approaches
object technology
> Design by Contract Development level:
> Genericity, multiple sixties/seventies
inheritance

» Architectural techniques Only understandable through

operational reasoning

The chasm “

Theoretical models, process calculi... Elegant theoretical
basis, but

> Little connection with practice (some exceptions, e.g.
BPEL)

> Handle concurrency aspects only
Practice of concurrent & multithreaded programming
> Little influenced by above

> Low-level, e.g. semaphores
> Poorly connected with rest of programming model

Wrong (in my opinion) assumptions 0

“Objects are naturally concurrent"” (Milner)

> Many attempts, of ten based on "Active objects”
(a self-contradictory notion)

> Lead to artificial issue of "Inheritance anomaly”

“Concurrency is the basic scheme, sequential programming
a special case " (many)

> Correct in grinciple, but in practice we understand
sequential best

Dining philosophers

class PHILOSOPHER inherit
PROCESS
rename
sefup as getup
redefine step end

feature {BUTLER)}
step
do

think; eat (left, right)
end

eat (/, r. separate FORK)
-- Eat, having grabbed /and r-
do .. end
end

13

Typical traditional code 0,

Listing 4.33: Variables for Tanenbaum's solution

1 state - ["thinking’] * b
2 gsem - [Semaphore(0) for i in range(5)]
3 mutex = Semaphore(l)

The nitial value of atate i= a list of 5 copies of *thinking’. sem is a list of
5 semaphores with the initial value 0. Here is the code:

Listing 4.34: Tanenbanm's solution

1 def get_fork(i):

2 mitex.wait ()

3 state[i] = ’hungry’

4 test (i)

5 mutex.signal ()

& gem[1] .wait ()

7

8 def put_fork(i}:

9 mutex.wait i)
10 state[i] = 'thinking®
11 testiright{i))
12 teat(left(i))
13 muitex.signal ()
14
15 def test(i):

16 if state[i] =-- 'hungry’ and
17 state (left (i)) !-= ‘eating’ and
1= state (right (i)) != ‘eating’:
19 atate[i] = ‘eating’
20 sem[i] . aignal ()

14

Object-oriented computation)

To perform a computation is
> To apply certain actions
> To certain objects
> Using certain processors

Processor

0

What makes an application concurrent?

Processor:
Thread of control supporting sequential execution of
instructions on one or more objects

> Computer CPU

Actions Objects
» Process

- Threa

> AppDomain ((NET) ...

Can be implemented as:

Will be mapped to computational resources

“lpuf

/tem, remove

put (b: BUFFER [61: v: 6)\
-- Store vinto b.
require

not b.is_full

ensure

ﬂ_queue: BUFFER [T]

O,

if not my_gueuve.is_full then

\\e iy not b./is_empty /

S

put (my_qgueue, 1)

Reasoning about objects: sequential 0,

{INVand Pre,.} body, {INVandPost,}

{Pres’} x.r(a) {Posir'}

Only n proofs if n exported routines!

Priming represents

: actual-formal
“.argument subs’ri'ru’rio '

In a concurrent context

Only nproofs if nexported routines?

Client 1 Client 2 Client 3

ri r2 rs

No overlapping!

{INVand Pre,.} body, {INV andPost,}

{Pre,.} x.r(a) {Post,}

SCOOP rules 0,

> One processor per object: "handler”

> At most one feature (operation) active on an object at
any time

Feature call: sequential

x.r(a)

Client

ﬁrevious N
x./"(a) —>

Supplier

(r(x: A
do

\next ;

Processor

o

Feature call: asynchronous

Client

Supplier
; 2
ﬁrewous oA D)
x.r (a) do
\nexrt) \ end J/

Client's handler Supplier's handler

The fundamental difference)

To wait or not to wait:
> If same processor, synchronous
> If different processor, asynchronous

Difference must be captured by syntax:
> X T

> x: separate T -- Potentially different processor

Fundamental semantic rule: x.r (a) waits for non-
separate x, doesn't wait for separate x.

Consistency rules: avoiding traitors

nonsep: T

Traitor!
sep: separate T

nonsep = sep

nonsep.p (a)

Trusting what you read

my_buffer: separate QUEUE [T]

my_buffer.put (a)

.. Instructions not affecting the buffer...

y = my_buffer.item <

Access control policy

Require target of separate call to be formal
argument of enclosing routine:

push (b: separatel QUEUE [T, value: T)
-- Add value, FIFO-style, 1o b.
do
b.push (value)
end

Access control policy

Target of a separate call must be formal
argument of enclosing routine:
put (b: 'separate | QUEUE [T, value: T)
-- Store value into buffer.
do
b.put (value)
end

To use separate object:
my_buffer: separate QUEUE [INTEGER]
create my_buffer

put (my_buffen , 10)

Separate argument rule 0,

p
The target of a separate call
must be an argument of the enclosing routine

Separate call: x./(...) where xis separate

Wait rule)

a A routine call with separate arguments)

will execute when all corresponding processors
are available

and hold them exclusively
\ for the duration of the routine /

Dining philosophers

class PHILOSOPHER inherit
PROCESS
rename
sefup as getup
redefine step end

feature {BUTLER)}
step
do

think . eat (/eft, right)
end

eat (/, r: separate FORK)
-- Eat, having grabbed /and -
do .. end
end

30

Resynchronization

No explicit mechanism needed for client to
resynchronize with supplier after separate call.

The client will wait only when it needs to:
x.f

x.g(a)
y.f

%Wai’r herel |
value := x.some_query

Lazy wait (Denis Caromel, wait by necessity)

Contracts

put (buf: BUFFER[INTEGER] . v: INTEGER)
-- Store vinto buffer.
require

not but.is_full
v>0

buf.put (v)
ensure
not buf.is_empty

do

end

puf (my_buffer, 10)

32

“lpuf

/tem, remove

put (b: BUFFER [61: v: 6)\
-- Store vinto b.
require

not b.is_full

ensure

ﬁ_queue: BUFFER [T]

O,

if not my_qgueuve.is_full then

\\e .y not b.is_empty /

S

put (my_qgueue, 1)

Contracts

put (buf: BUFFER [INTEGER] ; v: INTEGER)
-- Store vinto buffer.
require

not but.is_full
v>0

buf.put (v)
ensure
not buf.is_empty

do

Precondition becomes
wait condition

end

puf (my_buffer, 10)

Full synchronization rule

s

\.

A call with separate arguments waits until:
>The corresponding objects are all available
> Preconditions hold

/

"Separate call”:

x.f(a) -- where ais separate

Which semantics applies? 0,

/puf(buf . separate BUFFER [INTEGER); /. INTEGER) \
require

Y | Wait condition
/>0
do
buf.put (1)
end
Correctness
condition

my_buffer: separate BUFFER [INTEGER]
put (my_buffer, 10)

36

Generalized semantics of preconditions O

> Sequentiality is a special case of concurrency.
> Wait semantics always applies.

» Wait semantics boils down to correctness semantics for
non-separate preconditions.

= Smart compiler can detect some cases
= Other cases detected at run time

Distinction between controlled and uncontrolled rather
than separate and non-separate.

What about postconditions? ©
zurich, novgorod . separate LOCATION

Cpawn_ two_activities (locl, loc2: separate LOCA TION)\

do
locl.do_job

loc2.do_job
ensure

locl.is_ready
loc2.is_read
_end W

en

spawn_two_activities (zurich, novgorod) . .
do_local stuff Shog.lld we walt for

- . zurich.is_ready?
get_result (zurich)

38

Reasoning about objects: sequential 0,

{INVand Pre,.} body, {INVandPost,}

{Pre} x.r(a) {Post.}

Only nproofs if nexported routines!

39

Refined proof rule (partial correctness)

0

{INV A Pre.(x)} body,.{INV A Post,. (x)}
{Pre.(a<)} e.r(a) {Post.(ac"")}

Hoare-style sequential reasoning

Controlled expressions (known statically as part of the
type system) are:

> Attached (statically known to be non-void)
> Handled by processor locked in current context

Elevator example architecture 0

cabin

cabin

ller
22 MOTOR

FLOOR _BUTTON

ELEVATOR }

CABIN BUTTON

glevators: ARRAY [...]

DISPATCHER

CHent'ﬁ

[Inheritance

For maximal concurrency, all objects are separate

41

Other aspects

What if a separate call, e.g. in

r(a: separate T)

do
a.r
a.g
a.h
end

causes an exception?

Status

> All of SCOOP except exceptions and duels
implemented

» Implementation available for download
» Numerous examples available for download

se.ethz.ch/research/scoop.html

http://se.ethz.ch/research/scoop.html

Current developments

Implementation: integrating into EiffelStudio
Performance evaluation

Theory:
> Deadlock prevention and detection
» Less restrictive model (see STM)
> Transactions
> Full-fledged semantics
> Distributed SCOOP, Web Services

Why SCOOP? “

> Simple (one new keyword) yet powerful

> Easier and safer than common concurrent
techniques, e.g. Java Threads

> Full concurrency support
> Full use of O-O and Design by Contract

» Retains ordinary thought patterns, modeling power
of O-O

> Supports wide range of platforms and concurrency
architectures

> Concurrency should be easy: programmers need to
sleep better!

