=
Concurrency and Coordination

in Robotics
Hexapod Control using SCOOP

Ganesh Ramanathan randi, Sebastian Nanz




Outline

The problem of Hexapod locomotion
Specification: the biological model
Implementations
e Sequential programming
e Multi-threaded programming
e SCOOP (Simple Concurrent Object-Oriented Programming)
Demonstration



Legs and Locomotion

Distributed control

Load sensing

\\\

Centralised control

Balance sensing




- Hexapod Locomotion

The hexapod should maintain the static stability by keeping the
center of gravity within the bounds of the grounded legs.

Dragging of feet should be avoided.

Three degrees of freedom per leg, load sensor on feet, forward
and rear angle sensing



* Alternating protraction and retraction of tripod pairs

e Begin protraction only if partner legs are down

e Depress legs only if partner legs have retracted
e Begin retraction when partner legs are up



Biological Model

l:rlu Faldn

Frodred o
@ o ey e

A BRTACT N

* Sensory Inputs allow or inhibit transmission of pulses from
the Pattern Generator



* Hind legs have force sensors on feet and retraction limit switches.



The Hexapod Robot

Commands

Read sensor

* The control program (SCOOP based or other variants)
runs on the PC and transmits command to the on-board
servo controller.

* It also polls the inputs to obtain sensor information.



" Implementation: Sequential Program

TripodLeg lead = tripodA;
TripodLeg lag = tripodB;

while (true)

{
lead.Raise();
lag.Retract();
lead.Swing();
lead.Drop():

TripodLeg temp = lead,
lead = lag;,
lag = temp;



Implementation: Multi-Threaded Program

private object m_protractionLock = new object();

private void ThreadProcWalk(object obj)
{
Tripodleg leg = obj as Tripodleg;
while (Thread.CurrentThread.ThreadState \=ThreadState.
AbortRequested)
{

/l Waiting for protraction lock

lock (m_protractionLock)

{
/I Waiting for partner leg drop
leg.Partner.DroppedEvent. WaitOne();
leg.Raise();

}

leg.Swing();

// Waiting for partner retraction
leg.Partmer.RetractedEvent. WaitOne();
leg.Drop();

/' Waiting for partner raise
leg.Partner.RaisedEvent.WaitOne();
leg.Retract();



SCOOP Overview

Each object is associated with an abstract processor (its

handler)

Feature calls can only be executed by the handling
processor, providing mutual exclusion on a per-object basis

Locking is expressed by the formal argument list of a
routine, providing mutual exclusion on a set of objects

Synchronization is expressed by wait conditions
(preconditions with wait semantics)



\

" Implementation: SCOOP
(&)

S1

S2

are_legs_up
are_legs_down

are_legs_retracted
is_protaction_pending

Poller




Implementation: SCOOP

walk
do
checklegs (my_signaler)
from until my_signaler.stop_requested
loop
begin_protraction (partner_signaler, my_signaler)
ensure_protraction (my_signaler)
complete_protraction (partner_signaler)
execute_retraction (partner_signaler, my_signaler)
end
end




Implementation: SCOOP

begin_prutractiun{partner, me : separate LEG GROUF SIGHNALER) is

require

my legs retracted : me.legs retracted

partner down : partner.legs down

partner_nut_prntracting : not partner.prntractinn_pending
do

io.put string (group name)

io.put string (" : begin protraction ")

lo.put _new line

tripod.lift

me.set protraction pending (true)
end



Main benefits of SCOOP

Freedom of data races

Wait conditions are an intuitive mechanism for
implementing coordination

Small semantical gap between specification and
implementation



Demonstration




	Concurrency and Coordination in Robotics�Hexapod Control using SCOOP
	Outline
	Legs and Locomotion
	Hexapod Locomotion
	The Tripod Gait
	Biological Model
	The Hexapod Robot
	The Hexapod Robot
	Implementation: Sequential Program
	Implementation: Multi-Threaded Program
	SCOOP Overview
	Implementation: SCOOP
	Implementation: SCOOP
	Implementation: SCOOP
	Main benefits of SCOOP
	Demonstration

