e University of Nizhni Novgorod
Faculty of Computational Mathematics & Cybernetics

Introduction to Parallel

Programming
Section 4. Part 3.

Parallel Programming with MPI

Gergel V.P., Professor, D.Sc.,
Software Department

Contents

Q Groups of Processes and Communicators

Q Virtual Topologies
— Cartesian Topologies (Grids)
— Graph Topologies
Q Additional information on MPI
— Programming with MPI in Fortran
— Overview of MPI Program Execution Environment
— Additional Features of the Standard MPI-2

aQ Summary

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P.

2> 36

Managing Groups of Processes and Communicators...

a Managing Groups...

— Processes are united into groups. The group may contain all
the processes of a parallel program or a part of the available
processes only. The same process may belong to several
groups,

— The groups of processes are formed in order to create
communicators on their basis,

— The groups of processes may be defined on the basis of the
available groups only. The group associated with the
predetermined communicator MPI. COMM_WORLD may be
used as the source group:

int MP1_Comm_group (MP1_Comm comm, MPI_Group *group);

l !NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 35 36
© Gergel V.P.

Managing Groups of Processes and Communicators...

a Managing Groups...

— New groups may be created on the basis of the existing
groups:

* |t Is possible to create a new group newgroup on the basis of
the group oldgroup, which includes n processes. The ranks of
the processes to be included in newgroup are enumerated in
the array ranks:

int MPI_Group_incl(MP1_Group oldgroup,int n,

int *ranks, MPI_Group *newgroup);

* |t Is possible to create a new group newgroup on the basis of
the group oldgroup, which includes n processes. The ranks of
the processes that have not to be included in newgroup are
enumerated in the array ranks:

int MPI_Group_excl(MP1_Group oldgroup,int n,
ng int *ranks, MPI_Group *newgroup);

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 45 36
© Gergel V.P.

Managing Groups of Processes and Communicators...

a Managing Groups...

— New groups may also be created by the following operations:

« Creating a new group newgroup by uniting the groups groupl
and group?2:

int MPI_Group_union(MP1_Group groupl, MPI_Group group2,
MP1_Group *newgroup);

« Creating a new group newgroup from the common processes
of the groups groupl and group?2:

int MP1_Group_intersection (MPI_Group groupl,
MP1_Group group2, MPI_Group *newgroup);

e Creating a new group newgroup by the difference of the groups
groupl and group2:
int MPI_Group_difference (MPI1_Group groupl,
ng MP1_Group group2, MPI1_Group *newgroup);

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 5 36
© Gergel V.P.

Managing Groups of Processes and Communicators...

a Managing Groups:

— The following MPI functions provide obtaining information of
the group of processes:

e Obtaining the number of processes in the group:

int MP1_Group_size (MP1_Group group, Int *size);

« Obtaining the rank of the current process in the group:

int MP1_Group_rank (MP1_Group group, Int *rank);

— After the termination of its use, the group must be deleted:

int MP1_Group_free (MP1_Group *group);

l !NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 6 36
© Gergel V.P.

Managing Groups of Processes and Communicators...

aQ Managing Communicators...

— A communicator in MPI is a specially designed control
object, which unites in its contents a group of processes and
a number of additional parameters (context), which are used
In data communication operations,

— This subsection discusses managing the
Intracommunicators, which are used for data communication
operation within a group of processes

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 7 36
© Gergel V.P.

Managing Groups of Processes and Communicators...

aQ Managing Communicators...

— To create new communicators the two main methods are
used:
* The duplication of the available communicator:

int MPI_Comm_dup (MPI_Comm oldcom, MPI_comm *newcomm) ;
* The creation of a new communicator from the subset of the
processes of the available communicator:

int MPI_comm_create (MP1_Comm oldcom, MPI_Group group,
MP1_Comm *newcomm) ;

— It should be noted that the operation of creating communicators is
collective and must be executed by all the initial communicator
processes,

— After the termination of its use, the communicator should be
deleted:

int MP1_Comm_free (MPI_Comm *comm);

l !NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 8- 36
© Gergel V.P.

Managing Groups of Processes and Communicators...

aQ Managing Communicators...

— The following function provides a fast and useful method of
simultaneous creation of several communicators:

int MPI_Comm_split (MPI_Comm oldcomm, int split, Int key,
MPI_Comm *newcomm),

where

- oldcomm — the initial communicator,

- split — the number of the communicator, to which the process
should belong,

- key — the rank order of the process in the communicator being
created,

- newcomm — the communicator being created.

— The function MPI_Comm_split should be called in each process of the
communicator oldcomm

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 9 36
© Gergel V.P.

Managing Groups of Processes and Communicators

a Managing Communicators:

— The execution of the function MPI_Comm_split leads to
separating the processes into disjoint groups, each new group
Is formed from processes which have the same values of the
parameter split. On the basis of the created groups a set of
communicators is created. The order of enumeration for the
process ranks is selected in such a way that it corresponds to
the order of the values key (the process with the greater value
key should have a higher rank)

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 10> 36

Virtual Topologies...

a The topology of a computer system is the structure of the network
nodes and communication links, which connect them. The topology
may be presented as a graph, where the vertices are the system
processors (processes), and the arcs correspond to the available
communication links (channels)

Q Point-to-point data communication operations may be executed for
any processes of the same communicator. All the processes of the
communicator participate in collective operations. In this respect, the
logical topology of the communication links in a parallel program is a
complete graph

aQ We may organize the logical presentation of any necessary virtual
topology. For this purpose it is sufficient to form additional process
addressing

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)

© Gergel V.P. 11> 36

Virtual Topologies...

Q Cartesian Topologies (Grids)...

— Cartesian topologies assume the presentation of a set of
processes as a rectangular grid and the use of Cartesian
coordinate system for pointing to the processes,

— The following function is used in MPI for creating the Cartesian
topology (grid):

int MP1_Cart _create(MP1_Comm oldcomm, int ndims, Int *dims,

int *periods, int reorder, MPI_Comm *cartcomm),

where:

— oldcomm - the initial communicator,

- ndims - the Cartesian grid dimension,

- dims - the array of ndims length, it defines the number of processes
in each dimension of the grid,

- periods - the array of ndims length, which defines whether the grid is
periodical along each dimension,

- reorder - the parameter for pointing out if the process ranks can be reodered,

— cartcomm — the communicator being created with the Cartesian

NN process topology
@ Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)

© Gergel V.P. 12> 36

Virtual Topologies...

Q Cartesian Topologies (Grids)...
— In order to determine the Cartesian process coordinates
according to its rank, the following function can be used:

int MPI_Card _coords (MPI_Comm comm, int rank, Int ndims,
int *coords),

where:
- comm — the communicator with grid topology,
- rank - the rank of the process, for which Cartesian coordinates are

determined,
- ndims - the grid dimension,
— coords- the Cartesian process coordinates calculated by the function

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 13> 36

Virtual Topologies...

Q Cartesian Topologies (Grids)...

— The reverse operation, i.e. determining the process rank
according to its Cartesian coordinates, is provided by
means of the following function:

int MPI_Cart_rank (MP1_Comm comm, int *coords, Int *rank),
where

- comm — the communicator with grid topology,
- coords - the Cartesian coordinates of the process,
- rank — the process rank calculated by the function
lyu
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)

© Gergel V.P. 14 > 36

Virtual Topologies...

Q Cartesian Topologies (Grids)...

— The procedure of splitting the grids into subgrids of smaller
dimension, which is useful in many applications, is provided
by the following function :

int MPI_Card _sub(MP1_Comm comm, int *subdims,
MP1_Comm *newcomm),
where:
— comm - the initial communicator with grid topology,
- subdims — the array for pointing the subgrid coordinates that can vary,
- newcomm - the created communicator with the subgrid.

The function MPI_Cart_sub defines, while it is being carried
out, the communicators for each combination of the
coordinates of the fixed dimensions of the initial grid

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 15> 36

Virtual Topologies...

Q Cartesian Topologies (Grids)...

— Example: Creating the two-dimensional grid 4x4, the rows
and columns of which have a ring structure (the last process
IS linked with the first one) . Then the communicators with
the Cartesian topology is determined for each grid row and
column separately. Eight communicators are created for the
grid of 4x4 size in this example. For each process the
defined communicators RowComm and ColComm
correspond to the row and the column of the processes, to
which the given process belongs

Code

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 16 > 36

Virtual Topologies...

Qa Cartesian Topologies (Grids)...

— The additional function MPI_Cart_shift provides the support
of shift communications along a grid dimension:

 The cyclic shift on k elements along the grid dimension. The
data from the process i is transmitted to the process (i+k)
mod n, where n is the size of the dimension, along which the
shift is performed,

 The linear shift on k positions along the grid dimension. In
this variant of the operation the data from the processor i is
transmitted to the processor i+k (if the latter is available)

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 17> 36

Virtual Topologies...

Q Cartesian Topologies (Grids)...

— The function MPI_Cart_shift provides obtaining the ranks of
the processes, which are to exchange the data with the
current process (the process, which has called up the
function MPI_Cart_shift):

int MPI_Card_shift(MP1_Comm comm, int dir, int disp,
iInt *source, Int *dst),

where:
- comm — the communicator with grid topology,
- dir — the number of the dimension, along which the shift is
performed,
- disp — the shift value (<0 — is the shift towards the beginning

of the dimension),
- source - the rank of the process, from which the data should be

obtained,
- dst - the rank of the process, to which the data should be sent

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 18 36
© Gergel V.P.

Virtual Topologies...

Q Cartesian Topologies (Grids):

— It should be noted, that the function MPI_Cart_shift only
determines the rank of the processes, which are to
exchange data in the course of shift operation. The
execution of data transmission may be carried out, for
Instance, by means of the function MPI_Sendrecv

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 19> 36

Virtual Topologies...

a Graph Topology...

— To create a communicator with the graph topology the
following function is intended in MPI:

int MP1_Graph_create(MP1_Comm oldcomm, int nnodes,
Int *Index, Int *edges, iInt reorder, MPI_Comm *graphcomm),
where:

- oldcomm - the initial communicator,

- nnodes - the number of the graph vertices,

- 1ndex - the number of the arcs proceeding from each vertex,

- edges - the sequential list of the graph arcs,

- reorder - the flag for pointing out if the process ranks can be reodered,

— cartcomm — the created communicator with the graph type topology.

— Creating the topology is a collective operation and should be
carried out by all the processes of the initial communicator

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)

© Gergel V.P. 20 > 36

Virtual Topologies...

Q Graph Topology (example)...
— The number of processes is equal to 5, the graph vertices orders are
(4,1,1,1,1), and the incidence matrix looks as follows:

° Processes Communication Lines
‘., 0 1,2,3,4
1 0
oS oWo 2 0
. .
e 4 0)

— To create the topology with the graph of this type, it is necessary to
perform the following program code:

int i1ndex|[] { 4,1,1,1,1 };

int edges|] {1,2,3,4,0,0,0,0 };

MPI_ Comm StarComm;

MP1_Graph_create(MPI_COMM_WORLD, 5, index, edges, 1,
&StarComm) ;

l !NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 21> 36

Virtual Topologies

Q Graph Topology:

— The number of the neighboring processes, which contain
the outgoing arcs from the current process, may be
obtained by the following function:

int MP1_Graph_neighbors_count(MPl_Comm comm, int rank,
int *nneighbors);
— Obtaining the ranks of the neighboring vertices is provided
by the following function:

int MPI_Graph_neirghbors(MP1_Comm comm, int rank,
int mneighbors, Int *neighbors);

(where mneighbors is the size of the array neighbors)

l !NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 22> 36

Additional information on MPI...

aQ Programming with MPI in Fortran...

— The subprograms of the library MPI are procedures, and
thus, they are called by means of the procedure call
statement CALL,

— The termination codes are obtained though the additional
parameter of the integer type, which is located last in the
list of the procedure parameters,

— The variable status is the integer type array, which
consists of MPI_STATUS_SIZE elements,

— The types MPlI_Comm and MPI_Datatype are presented
by the type INTEGER

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 23> 36

Additional information on MPI...

aQ Programming with MPI in Fortran

PROGRAM MAIN
include "mpi.h"
INTEGER PROCNUM, PROCRANK, RECVRANK, IERR
INTEGER STATUS(MPI STATUS _SIZE)
CALL MPI_Init(IERR)
CALL MP1_Comm_size(MPI_COMM_WORLD, PROCNUM, IERR)
CALL MPI_Comm_rank(MP1_COMM_WORLD, PROCRANK 1ERR)
IF (PROCRANK.EQ.O)THEN
| operations carried out only with O rank process
PRINT *,"Hello from process ", PROCRANK
DO i = 1, PROCNUM-1
CALL MPI _RECV(RECVRANK, 1, MPI1_INT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM WORLD TSTATUS, 1ERR)
PRINT *, “Hello from process ", RECVRANK
END DO

ELSE ! The message sent by all the processes, except 0 rank process
CALL MP1_SEND(PROCRANK,1,MPI_INT,0,0,MP1_COMM_WORLD, IERR)

END IF
CALL MPI_FINALIZE(IERR)
STOP
NN END
J& Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)

© Gergel V.P. 24 > 36

Additional information on MPI...

a Overview of MPI Program Execution Environment...

— The MPI program execution environment must be installed
In a computer system in order to carry out parallel
computations:

e To provide the development, compilation, linkage and
execution of parallel program the usual means of program
development (such as, for instance, Microsoft Visual Studio)
and a version of MPI library are sufficient,

* In order to carry out the parallel programs, the environment
should have the tool of indication of the processors being
used, the utilities for starting the remote programs, etc.,

 Itis also desirable to have the tools of profiling, tracing and
debugging parallel program in the environment

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 25> 36

Additional information on MPI...

a Overview of MPI Program Execution Environment:

— The start of MPI program also depends on the execution
environment. In the majority of cases this operation is
carried out by means of the command mpirun. This
command may have the following possible parameters:

e Execution mode. It may be local or multiprocessor. The local
mode is usually indicated by means of the key —localonly,

 The number of processes, which should be created when a
parallel program is started,

* The list of the processors being used, which is defined by
the configuration file,

 The executed file of the parallel program,

 The command string with the parameters of the executed
program

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 26 > 36

Additional information on MPI

Q Additional Features of the Standard MPI-2

— The dynamic generation of the processes, which assumes the
creation and termination of the parallel program processes in
the course of execution,

— The single-sided process interaction, which allows only one
process to initiate data communication,

— The parallel input/output, which provides a special interface for
the operation of the processors with the file system,

— The extended collective operations, which include, for instance,
the procedures for simultaneous interaction of the processes
from several communicators,

— The C++ interface

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 21 > 36

Summary

Q This part of the presentation focuses on the issues of
process and communicator and processes groups
management

Q The use of virtual topologies are considered

Q The additional information on MPI is given. The
Information includes the issues of MPI based parallel
program development in Fortran, an overview of the
execution environment for MPI based programs and
a survey of the additional possiblilities of the standard

MPI-2

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 28 > 36

Discussions

aQ Advantages of the use of the additional
communicators

Q Benefits of using the Cartesian and graph virtual
topologies

l !’NN
Nizhni Novgorod, 2005

Introduction to Parallel Programming: Parallel Programming with MPI (part 3) 29 > 36
© Gergel V.P.

Exercises

aQ Develop a sample program for the Cartesian
topology
A Develop a sample program for a graph topology

A Develop subprograms for creating a set of additional
virtual topologies (a star, a tree, etc.)

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 30 > 36

References...

a The internet resource, which describes the standard
MPI: http://www.mpiforum.org

Q One of the most widely used MPI realizations, the
library MPICH, Is presented on http://www-
unix.mcs.anl.gov/mpi/mpich

Q The library MPICHZ2 with the realization of the
standard MPI-2 is located on http://www-
unix.mcs.anl.gov/mpi/mpich?2

@
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)

© Gergel V.P. 31> 36

http://www.mpiforum.org/
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich2
http://www-unix.mcs.anl.gov/mpi/mpich2

References...

a Group, W., Lusk, E., Skjellum, A. (1994). Using MPI.
Portable Parallel Programming with the Message-
Passing Interface. —-MIT Press.

a Group, W., Lusk, E., Skjellum, A. (1999a). Using MPI -
2nd Edition: Portable Parallel Programming with the
Message Passing Interface (Scientific and Engineering
Computation). - MIT Press.

a Group, W., Lusk, E., Thakur, R. (1999b). Using MPI-2:
Advanced Features of the Message Passing Interface
(Scientific and Engineering Computation). - MIT Press.

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 32> 36

References

a Pacheco, P. (1996). Parallel Programming with MPI.
- Morgan Kaufmann.

Q Quinn, M. J. (2004). Parallel Programming in C with
MPI and OpenMP. — New York, NY: McGraw-Hill.

a Snir, M., Otto, S., Huss-Lederman, S., Walker, D.,
Dongarra, J. (1996). MPI: The Complete Reference.
- MIT Press, Boston, 1996.

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 33> 36

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://mitpress.mit.edu/book-home.tcl?isbn=0262692155

Next Section

Qa Parallel Programming with OpenMP

@
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)

© Gergel V.P. 34 > 36

Author’s Team

Gergel V.P., Professor, Doctor of Science in Engineering, Course
Author

Grishagin V.A., Associate Professor, Candidate of Science in
Mathematics

Abrosimova O.N., Assistant Professor (chapter 10)

Kurylev A.L., Assistant Professor (learning labs 4,5)

Labutin D.Y., Assistant Professor (ParaLab system)

Sysoev A.V., Assistant Professor (chapter 1)

Gergel A.V., Post-Graduate Student (chapter 12, learning lab 6)

Labutina A.A., Post-Graduate Student (chapters 7,8,9, learning labs
1,2,3, ParalLab system)

Senin A.V., Post-Graduate Student (chapter 11, learning labs on
Microsoft Compute Cluster)

Liverko S.V., Student (ParalLab system)

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 35> 36

About the project m

The purpose of the project is to develop the set of educational materials for the
teaching course “Multiprocessor computational systems and parallel programming”.
This course is designed for the consideration of the parallel computation problems,
which are stipulated in the recommendations of IEEE-CS and ACM Computing
Curricula 2001. The educational materials can be used for teaching/training
specialists in the fields of informatics, computer engineering and information
technologies. The curriculum consists of the training course “Introduction to the
methods of parallel programming” and the computer laboratory training “The
methods and technologies of parallel program development”. Such educational
materials makes possible to seamlessly combine both the fundamental education in
computer science and the practical training in the methods of developing the
software for solving complicated time-consuming computational problems using the
high performance computational systems.

The project was carried out in Nizhny Novgorod State University, the Software
Department of the Computing Mathematics and Cybernetics Faculty
(http://www.software.unn.ac.ru). The project was implemented with the support of
Microsoft Corporation.

l !’NN
Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 3)
© Gergel V.P. 36 > 36

http://www.software.unn.ac.ru/

	Section 4. Part 3. Parallel Programming with MPI
	Contents
	Managing Groups of Processes and Communicators…
	Managing Groups of Processes and Communicators…
	Managing Groups of Processes and Communicators…
	Managing Groups of Processes and Communicators…
	Managing Groups of Processes and Communicators…
	Managing Groups of Processes and Communicators…
	Managing Groups of Processes and Communicators…
	Managing Groups of Processes and Communicators
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies…
	Virtual Topologies
	Additional information on MPI…
	Additional information on MPI…
	Additional information on MPI…
	Additional information on MPI…
	Additional information on MPI
	Summary
	Discussions
	Exercises
	References…
	References…
	References
	Next Section

