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Matrix multiplication is one of the essential problems in matrix calculations. This Section discusses several 

parallel algorithms for carrying out the operation. Two of them are based on block-striped data decomposition 
scheme. The other two methods are based on checkerboard block scheme decomposition. They are the well known 
the Fox algorithm and the Cannon method.  

This Section has been written  based essentially on the teaching materials given in Quinn (2004). 

8.1. Problem Statement 
Multiplying an nm×  matrix A with m rows and n columns and an ln×  matrix B with n rows and l columns 

produces an  matrix C with m rows and l columns. Each element of the matrix C is calculated according to the 
formula: 
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As it can be seen in (8.1), each element of the matrix C is the result of the inner product of the corresponding 
row of the matrix A and column of the matrix B: 
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This algorithm executes m·n·l multiplications and the same number of additions of the initial matrix elements. 
In case of square matrices, the size of which is nn× , the number of the executed operations is the order O(n3). There 
are also sequential matrix multiplication algorithms of smaller computational complexity (for instance, the Strassen 
algorithm). But studying these algorithms though requires certain efforts and for simplicity we will use the above 
described sequential algorithm as the basis for parallel method development in this section. We will also assume 
further that all matrices are square and their sizes are nn× . 



8.2. Sequential Algorithm 
The sequential matrix multiplication algorithm includes three nested loops: 

// Algorithms 8.2 
// Sequential matrix multiplication algorithm 
double MatrixA[Size][Size];  
double MatrixB[Size][Size]; 
double MatrixC[Size][Size]; 
int i,j,k; 
... 
for (i=0; i<Size; i++){ 
  for (j=0; j<Size; j++){ 
    MatrixC[i][j] = 0;  
    for (k=0; k<Size; k++){ 
      MatrixC[i][j] = MatrixC[i][j] + MatrixA[i][k]*MatrixB[k][j]; 
    } 
  } 
} 

Algorithm 8.1. Sequential matrix multiplication algorithm  
This algorithm is an iterative procedure and calculates sequentially the rows of the matrix C. In fact, a result 

matrix row is computed per outer loop (loop variable i) iteration (see Figure 8.1) 
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Figure 8.1. During the first iteration of loop variable i the first matrix A row and all the 

columns of matrix B are used to compute the elements of the first result matrix C row   

As each result matrix element is a scalar product of the initial matrix A row and the initial matrix B column, it 
is necessary to carry out  operations to compute all elements of the matrix C. As a result the time 
complexity of matrix multiplication is 

( 122 −nn )

( ) τ⋅−⋅= 122
1 nnT          (8.3) 

where τ is the execution time for an elementary computational  operation such as multiplication or addition. 

8.3. Matrix Multiplication in Case of Block-Striped Data Decomposition 
Let us consider two parallel matrix multiplication algorithms. Matrices A and B are partitioned into continuous 

sequences of rows or columns (stripes). 

8.3.1. Computation Decomposition 
As it is clear from the definition of matrix multiplication, all elements of the matrix C may be computed 

independently. As a result, a possible approach for parallelizing the matrix multiplication is to define the basic 
computational subtask as the problem of computing an element of the result matrix C. To carry out all the necessary 
computations each subtask must contain a row of the matrix A and a column of the matrix B. The total number of 
subtasks in case of this approach appears to be equal to n2 (according to the number of elements of the matrix C).  

One may note that the level of parallelism achieved in this approach is somewhat excessive. As a rule, in 
carrying out practical computations the number of the subtasks formed exceeds the number of the available 
processors. As a result, the aggregation stage of basic subtasks becomes inevitable. In this respect it is reasonable to 
aggregate the computations at the stage of selecting the basic subtasks. A possible solution is to combine all the 
computations related not with one, but with several elements of the result matrix C in a single subtask. For further 
discussion we will define the basic computational subtask as the problem of computing all row elements of the 
matrix C. This approach decreases the total number of subtasks up to value n.  

A row of the matrix A and all the columns of the matrix B must be available for carrying out all the necessary 
computations of the basic subtasks. The simple solution to the problem is duplicating the matrix B in all the 
subtasks, but it is unacceptable because of sizeable memory expenses needed for data storage. As a result, 
computations should be implemented so that subtasks contain only a part of the data needed for the computations at 
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any given moment. The access to the other part of the data should be provided by means of data communications. 
Two possible ways to carry out parallel computations of this type are considered in 8.3.2.  

8.3.2. Analysis of Information Dependencies  
To compute a row of the matrix C each subtask must have a row of the matrix A and access to all columns of 

the matrix B. Possible ways to organize parallel computations are described below.   
1. The first algorithm. The algorithm is an iterative procedure, the number of iterations is equal to the number 

of subtasks. Each subtask holds a row of the matrix A and a column of the matrix B at each algorithm iteration. At 
each iteration the scalar products of rows and columns containing in the subtasks are computed, and the 
corresponding elements of the result matrix C are obtained. After completing of all iteration computations the 
columns of matrix B must be transmitted so that subtasks should have new columns of the matrix B and new 
elements of the matrix C could be calculated. This transmission of columns among the subtasks must be executed in 
such a way that all the columns of matrix B should have appeared  in each subtask sequentially. 

A possible simple scheme to provide the required communications of the columns of matrix B among the 
subtasks is to present the topology of the information dependencies of the subtasks as a ring structure. In this case 
the subtask  i ,  0≤  i<n,will transmit its column of matrix B to the subtask  i+1 at each iteration (in accordance 
with the ring structure subtask n-1  transmits its data to the subtask 0) –  see Figure 8.2. After the algorithm 
termination the required condition will be provided, i.e. all the columns of matrix B will appear sequentially in each 
subtask.  
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Figure 8.2. General scheme of data communications for the first parallel algorithm of matrix 

multiplication in case of block-striped decomposition 

Figure 8.2 presents the iterations of the matrix multiplication algorithm for the case when matrices have four 
rows and four columns (n=4). At the beginning of the computations each subtask i, 0≤ i<n, holds i-th row of the 
matrix A and i-th column of the matrix B. As a result the subtask i can compute the element cii of the result matrix C. 
Further each subtask transmits its column of matrix B to the following subtask in accordance with the ring structure. 
These actions should be repeated until all the iterations of the parallel algorithm are completed.  

2. The second algorithm.  The difference of the second algorithm from the first one is that the subtasks 
contain not columns but rows of matrix B. As a result, data multiplication of each subtask is the multiplication of the 
row elements of the matrix B by a corresponding row element of the matrix A. Therefore, a row of partial results for 
matrix C is obtained in each subtask.  

In case of this scheme of data decomposition for matrix multiplication, it is necessary to provide sequential 
obtaining all rows of the matrix B by all in the subtasks, the multiplication of the row elements of the matrix B by a 
corresponding row element of the matrix A and summation of the new values and the previously computed ones. 
The ring structure of information dependencies may be also used to provide the necessary sequence of 
communications of the rows of the matrix B among the subtasks (see Figure 8.3). 
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Figure 8.3. General scheme of data communications for the second parallel algorithm of 
matrix multiplication in case of  block-striped decomposition 

Figure 8.3 presents the iterations of the matrix multiplication algorithm in the case when matrices have 4 rows 
and 4 columns (n=4). At the beginning of the computations each subtask i, 0≤ i<n, holds i-th rows of the matrix A 
and the matrix B. As a result of multiplication the subtask defines i-th row of the partial results for the matrix C. 
Then each subtask transmits its row of the matrix B to the following subtask according to the ring structure of 
information dependencies. The described actions are repeated until all the iterations of the parallel algorithm are 
completed.  

8.3.3. Scaling and Distributing Subtasks among the Processors 
As a result of proper data decomposition the basic subtasks have the same computational complexity and the 

same intensity of the data communications. If the size of matrices n appears to be greater than the number of 
processors p, the basic subtasks may be aggregated by combining in one subtask several neighboring rows and 
columns of the multiplied matrices. In this case the initial matrix A is partitioned into a number of horizontal stripes, 
and matrix B is presented as a set of vertical (for the first algorithm) or horizontal (for the second algorithm) stripes. 
The stripe size should be equal to k=n/p (assuming that n is divisible by p), as it will make possible to provide equal 
distribution of the computational load among the processors. 

Any method of subtask distribution among the processors may be used if it efficiently presents the ring 
topology of the subtask communications. It might be sufficient, for instance, for the neighboring subtasks in the ring 
topology to be assigned to the processors linked by direct data communication lines. 

8.3.4. Efficiency Analysis  
Let us estimate the efficiency of the first matrix multiplication parallel algorithm.  
The total time complexity of the sequential algorithm, as it has been stated earlier, is proportional to n3. In case 

of the parallel algorithm each processor multiplies the stripes of the matrix A and the matrix B at each iteration (the 
stripe size is equal to n/p and, as a result, the total number of the multiplication operations performed is equal to 
n3/p2). As the number of the algorithm iterations is the same as the number of processors the complexity of the 
parallel algorithm, with no account for data communication, may be evaluated by means of the following 
expression:  

pnppnTp /)/( 323 =⋅= .          (8.4) 

With regard to this estimation, the speedup and efficiency of the given parallel algorithm of matrix 
multiplication look as follows:  
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Thus, the general efficiency analysis gives ideal characteristics of the parallel computation efficiency. To 
specify the obtained relations we should estimate more precisely the number of computational operations of the 
algorithm and take into account the overhead of data communications among the processors.  

With regards to the number and the duration of the operations the time for carrying out the computations for 
parallel algorithm may be estimated as follows:  

( ) ( ) τ⋅−⋅= 12)/( 2 npncalcTp           (8.6) 
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(where, as previously, τ  is the execution time of an basic computational operation). 
For the purpose of estimating the communication complexity of parallel computations we will assume that all 

data communication operations among the processors in the course of an algorithm iteration may be executed in 
parallel. The amount of the data transmitted among the processors is determined by the stripe size and is equal to n/p 
rows or columns of size n. The total number of parallel data communication operations is equal to the number of 
algorithm iterations minus one (at the last iteration data communication is not compulsory). Thus, the time 
complexity estimation for the data communication operations performed may be evaluated as:  

( ) ( ) ( )( )βα /1 pnnwpcommTp ⋅⋅+⋅−= ,       (8.7) 

where α is the latency, β is the network bandwidth, and w is the size of the matrix element in bytes. 
With regard to the relations obtained the total execution time for the parallel algorithm of matrix multiplication 

can be estimated by the following expression: 

( ) ( ) ( )( βατ /112)/( 2 pnnwpnpnTp ⋅⋅+⋅−+⋅−= ) .      (8.8) 

8.3.5. Computational Experiment Results 
The computational experiments for estimating the efficiency of the first parallel algorithm of matrix 

multiplication in case of block-striped data decomposition scheme were carried out under the conditions given in 
7.6.5.  

The experiments were carried out on the computational cluster on the basis of processors Intel XEON 4 
EM64T, 3000 Mhz and Gigabit Ethernet under OS Microsoft Windows Server 2003 Standard x64 Edition. 

For estimating the time τ of the basic computational operation execution the problem of matrix multiplication 
was solved by the use of the sequential algorithm. The calculation execution time obtained in this way was divided 
into the total number of the operations performed. As a result of the experiments, τ was found to be equal to 6.4 
nsec. The experiments performed in order to get the data communication network parameters gave the values of the 
latency α and the bandwidth β 47 msec and 53.29 Mbyte/sec correspondingly. All computations were performed 
over the numerical values of the double type, i.e. the value w is equal to 8 bytes.   

The results of the computational experiments are shown in Table 8.1. The experiments were performed with the 
use of 2, 4 and 8 processors.  

Table 8.1. The results of the computational experiments for the first parallel algorithm of matrix multiplication 
based on the block-striped data decomposition 

2 processors 4 processors 8 processors Matrix 
Size 

Serial 
Algorithm Time Speed Up Time Speed Up Time Speed Up 

500 0,8752 0,3758 2,3287 0,1535 5,6982 0,0968 9,0371
1000 12,8787 5,4427 2,3662 2,2628 5,6912 0,6998 18,4014
1500 43,4731 20,9503 2,0750 11,0804 3,9234 5,1766 8,3978
2000 103,0561 45,7436 2,2529 21,6001 4,7710 9,4127 10,9485
2500 201,2915 99,5097 2,0228 56,9203 3,5363 18,3303 10,9813
3000 347,8434 171,9232 2,0232 111,9642 3,1067 45,5482 7,6368
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The comparison of the experimental execution time  and the theoretical time  from expression (8.8) is 
given in Table 8.2  and in Figure 8.5.  

Table 8.2. The comparison of the experimental and theoretical execution time of the first matrix multiplication 
parallel algorithm based on the block-striped data decomposition 

2 processors 4 processors 8 processors 

.4. S  for the fir el algorith atrix multiplica ion (block

*
pT  pT

Matrix Size 
pT  *

pT  pT  *
pT  pT  *

pT  

500 0,8243 0,3758 0,4313 0,1535 0,2353 0,0968
1000 6,51822 5,4427 3,3349 2,2628 1,7436 0,6998
1500 21,9137 20,9503 11,1270 11,0804 5,7340 5,1766
2000 51,8429 45,7436 26,2236 21,6001 13,4144 9,4127
2500 101,1377 99,5097 51,0408 56,9203 25,9928 18,3303
3000 174,6301 171,9232 87,9946 111,9642 44,6772 45,5482
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Figure 8.5. Theoretical and experimental execution time with respect to matrix size (block-

striped matrix decomposition, 2 processors)  
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8.4. Fox Algorithm of Matrix Multiplication in Case of Checkerboard Data 
Decomposition 

⎞
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In designing the parallel methods of matrix multiplication the checkerboard block matrix decomposition is 
widely used just as the block-striped matrix partitioning. Let us analyze this method of computations in detail.  

8.4.1. Computation Decomposition 
The checkerboard block scheme of matrix partitioning is described in detail in 7.2. In case of this method of 

data decomposition the initial matrices A and B and the result matrix C are subdivided into sets of blocks. For 
simplicity the further explanations we will assume all the matrices are square of n×n size, the number of vertical 
blocks and the number of horizontal blocks are the same and are equal to q (i.e. the size of all block is equal to k×k, 
k=n/q). In case of this data decomposition method the multiplying matrices A and B as blocks may be represented as 
follows:  
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where each block C
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ij of matrix C is computed in accordance with the expression:  

∑
−

=

med over the matrix blocks. As a result the basic subtask can be 
defin

 subtasks should have the corresponding sets of the matrix 
A ro  will inevitably lead to 
duplicating a ust be 
exec tations at any 

st of the data should be provided by means of data communications. One of 
the possi
Cann n 

To de
be reminde btasks are responsible for computing the separate blocks of the matrix C. It 
is also require hold only one plying matrices at each iteration.  

To ks can be used for enumeration. 
Thus, th e grid, which corresponds to the 
structure 

The Fox algorithm can be used to perform matrix multiplication com tations under these conditions (see for 
instance, 987),

In a

re the beginning of computations; 
 Blocks A'ij , B'ij  of matrices A and B, obtained by the subtask in the course of  computations. 

Parallel algorithm execution includes: 
• The initialization stage. Each subtask (i,j) obtains blocks Aij, Bij. All elements of blocks Cij in all subtasks 

are set to zero; 
• The computation stage. At this stage the following operations are carried out at each iteration  l, 0≤ l<q,:  

− For each row i, 0≤ i<q,  the block Aij of subtask (i,j) is transmitted to all the subtasks of  the same 
processor grid row; index j, which  defines the position of the subtask in the row, is computed according 
to the following expression:  

j = ( i+l ) mod q, 
    where mod  is operation of obtaining the remainder in integer division;: 
− Blocks A'ij, B'ij obtained as a result of subtask communications are multiplied and added to block Cij: 

=
1

0

q

s
sjisij BAC . 

In case of the checkerboard block data decomposition it is reasonable to define the basic computational 
subtasks on the basis of the computations perfor

ed as the problem of computing of a block of the matrix C.  
To perform all the necessary computations the basic 

ws and the matrix B columns. The placement all the necessary data in each subtask
nd to a considerable increase of the size of memory used. As a result, the computations m

uted in such a way that the subtasks should contain only a part of the data necessary for compu
given moment, and the access to the re

ble approaches (the Fox algorithm) will be discussed further in this Section. The second method (the 
o algorithm) will be discussed in 8.5.  

8.4.2. Analysis of Information Dependencies 
velop a parallel matrix multiplication method based on the checkerboard decomposition scheme it should 
d that in this case the basic su

d that each subtask should  block of the multi
enumerate the subtasks the indices of the blocks Cij contained in the subtas
e subtask (i,j) computes the block C . So the set of subtasks forms a squarij
of the checkerboard block decomposition of the matrix C.  

pu
 Fox et al. (1  Kumar et al. (1994)). 
ccordance with the Fox algorithm each basic subtasks (i,j) holds four matrix blocks: 

− Block Cij of matrix C, computed by the subtask; 
− Block Aij of matrix A, placed in the subtask befo
−
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− Blocks B'ij of each subtask (i,j) are transmitted to the subtasks, which are upper neighbors in the 
processor grid columns (the first row blocks are transmitted to the last row of the grid). 

To illustrate these rules we show the state of blocks in each subtask in the course of executing iterations of the 
computation stage (for the grid of  2×2). See Figure 8.6. 
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Figure 8.6. Block distribution among subtasks on iterations of the Fox algorithm  

8.4.3.  Scaling and Distributing Subtasks among Processors 
The number of blocks at the checkerboard decomposition scheme cam be regulated by variation of matrix 

block sizes. These sizes may be chosen so that the total number of the basic subtasks coincides with the number of 
processors p. Thus, for instance, in the simplest case when the number of processors is equal to p=δ2, the size of the 
block grid may be chosen equal to δ (i.e. q=δ). This way to define the number of blocks makes the amount of 
computations in each subtask the same and, thus, uniform balancing of the computational load is achieved. In a 
more general case, when the number of processors and the sizes of matrices are arbitrary, computational load may 
not b but proper setting the sizes of the matrix blocks can provide uniform 
load 

rocessors Pi,j. The required structure of the data communication network may be provided at the 
phys

e distributed among processors equally 
balancing with adequate accuracy.  
To execute the Fox algorithm efficiently, when the basic subtasks form a square grid and data communications 

consist in block transmission along rows and columns of the subtask grid, the network topology should be also a 
square grid. In this case it is possible to map easily the set of subtasks onto the set of processors by placing the basic 
subtasks (i,j) on p

ical level, if the network topology is a grid or a complete graph.  
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8.4.4. Efficienc ysis s 
Let us evaluate the computational complexity of the Fox algorithm. To formulate the required estimations we 

will

y Anal

 suppose that all the previous assumptions are met, i.e. all matrices are square, their sizes are n×n, the block grid 
is square and its size is equal to q (i.e. the size of all blocks is k×k, k=n/q), processors form a square grid and their 
number is p=q2. 

As it has been previously mentioned, the execution of the Fox algorithm requires q iterations, during which 
each processor multiplies its current blocks of the matrices A and B, and adds the multiplication results to the current 
block of the matrix C. With regard to the above mentioned assumptions, the total number of the executed operations 
will be of the order n3/p. As a result, the speedup and efficiency of the algorithm look as follows:  

p
pn

nS ==
3

  and  ( ) 13

3
==

nE .       (p )( 3 ⋅ pnpp 8.9) 

ncy is ideal. To make the obtained 

res n2/p operations. With regard to the above given expressions the 
computational time of the Fox algorithm ma

operation). 
Let us estimate now the overhead on mmunications among the processors. One of the processors of the 

proce

/((log 2
2

1
p α nwqcommT +=

wher

The general efficiency analysis indicates that parallel computation efficie
relations more precise we will estimate more exactly the number of algorithm computational operations and take 
into account the overhead related with data communications among the processors.  

Let us evaluate the number of computational operations. The complexity of scalar multiplication of the block 
row of the matrix A by the block column of the matrix B may be estimated as   2(n/q)-1. The number of rows and 
columns in the blocks is equal to n/q. As a result, the time complexity of block multiplication appears to be equal to 
(n2/p)(2n/q-1). The addition of the blocks requi

y be estimated in the following way:  

( ) ( ) τ⋅+−⋅= )]/(1/2)/[( 22 pnqnpnqcalcTp .        (8.10) 

(as previously that τ is the execution time of an basic computational 
data co

ssor grid row transmits its matrix A block to the rest of the grid row processors at each iteration. As it has been 
mentioned previously, the execution of this operation may be provided in log2q steps, if the topology of the network 
is a hypercube or a complete graph. As a result, the time complexity of data communications in accordance with the 
Hockney model may be estimated as follows:  

( ) )/) βp         (8.11) 

e α is the latency, β is the network bandwidth,  w is the size of a matrix elements in bytes. In case of the ring 
topology the expression for time estimation looks as follows:  

( ) )/)/(()2/(~ 21
p βα pnwqcommT += . 

After multiplying the matrix blocks the processors send their matrix B blocks to the processors, wh  
upper neighbors in the processor grid columns (the first row processors send their data to the last row processors). 

 the ti mplexity of these 
communication operations is the following:  

ich are

These operations may be carried out by the processors in parallel and, thus, me co

( ) βα /)( 22 pnwcommTp ⋅+= .        (8.12) 

After the summation of all the obtained expressions, it becomes clear that the total execution time for the Fox 
algorithm may be defined by means of the following relations:  

( ) ( )
( ) )/)/()()1(log()]/(1/2)/[( 2

2
22 βατ pnwqqqpnqnpnq +−++⋅+−⋅=

)/)/((1)/)/((log)]/(1/2) 2 βαβατ pnwqpnwqqpnqn =+⋅−+++⋅+−⋅
(8.13) 

that parameter  q  defines the size of the processor grid  and 

/[( 2222 pnqTp =

pq =(it should be reminded ). 

ithm for matrix multiplication in case of the 

this parallel 

d scheme by sequential calling 

8.4.5. Software Implementation 
Here we discuss possible software implementation of the Fox algor

checkerboard block data decomposition. The given program code contains the basic modules of the parallel 
ogram. The absence of some auxiliary functions will not hinder the process of understanding of pr

computation scheme. 
ional metho1. The main function. The main function implements the computat

out the necessary subprograms. 

// Program 8.1 
// The Fox algorithm of matrix multiplication – checkerboard decomposition 
// Program execution conditions:  
//   all matrices and their blocks are square,  
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//   matrix blocks and processors form square grids of the same size 
 
int ProcNum = 0;      // Number of available processes  
int ProcRank = 0;     // Rank of current process 
int GridSize;         // Size of virtual processor grid 
int GridCoords[2];    // Coordinates of current processor in grid 
MPI_Comm GridComm;    // Grid communicator 
MPI_Comm ColComm;     // Column communicator 
MPI_Comm RowComm;     // Row communicator 
 
void main ( int argc, char * argv[] ) { 
  double* pAMatrix;  // The first argument of matrix multiplication 
  double* pBMatrix;  // The second argument of matrix multiplication 
  double* pCMatrix;  // The result matrix 
  int Size;          // Size of matricies 
  int BlockSize;     // Sizes of matrix blocks on current process 
  double *pAblock;   // Initial block of matrix A on current process 
  double *pBblock;   // Initial block of matrix B on current process 
  double *pCblock;   // Block of result matrix C on current process 
  double *pMatrixAblock; 
  double Start, Finish, Duration; 
 
  setvbuf(stdout, 0, _IONBF, 0); 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  GridSize = sqrt((double)ProcNum); 
  if (ProcNum != GridSize*GridSize) { 
    if (ProcRank == 0) { 
      printf ("Number of processes must be a perfect square \n"); 
    } 
  } 
  else { 
    if (ProcRank == 0) 
      printf("Parallel matrix multiplication program\n"); 
 
    // Creating the cartesian grid, row and column communcators  
    CreateGridCommunicators(); 
   
    // Memory allocation and initialization of matrix elements 
    ProcessInitialization ( pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,  
      pCblock, pMatrixAblock, Size, BlockSize ); 
 
    DataDistribution(pAMatrix, pBMatrix, pMatrixAblock, pBblock, Size,  
      BlockSize); 
 
    // Execution of Fox method 
    ParallelResultCalculation(pAblock, pMatrixAblock, pBblock,  
      pCblock, BlockSize); 
 
    ResultCollection(pCMatrix, pCblock, Size, BlockSize); 
    TestResult(pAMatrix, pBMatrix, pCMatrix, Size);  
 
    // Process Termination 
    ProcessTermination (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,  
      pCblock, pMatrixAblock); 
  } 
 
  MPI_Finalize(); 
} 
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2. The function CreateGridCommunicators. This function creates a communicator as a two-dimensional 
nd each 

rmissibility of data 
rocesses of the grid columns and rows). After the grid has been created, each 
coordinates in the grid. The coordinates may be obtained by means of the 

 grid topology a set of communicators for each grid column and row separately is 
Cart_sub. 

square grid, determines the coordinates of each process in the grid and creates communicators for each row a
column separately. 

The grid is created by the function MPI_Cart_create (the vector Periodic defines the pe
communications among the bordering p

s parallel program process will have it
function MPI_Cart_coords. 

Then in addition to the
eated by the function MPI_cr

void CreateGridCommunicators() { 
  int DimSize[2];  // Number of processes in each dimension of the grid 
  int Periodic[2]; // =1, if the grid dimension should be periodic 
  int Subdims[2];  // =1, if the grid dimension should be fixed 
   
  DimSize[0] = GridSize;  
  DimSize[1] = GridSize; 
  Periodic[0] = 0; 
  Periodic[1] = 0; 
 
  // Creation of the Cartesian communicator  
  MPI_Cart_create(MPI_COMM_WORLD, 2, DimSize, Periodic, 1, &GridComm); 
 
  // Determination of the cartesian coordinates for every process  
  MPI_Cart_coords(GridComm, ProcRank, 2, GridCoords); 
   
  // Creating communicators for rows 
  Subdims[0] = 0;  // Dimensionality fixing 
  Subdims[1] = 1;  // The presence of the given dimension in the subgrid 
  MPI_Cart_sub(GridComm, Subdims, &RowComm); 
   
  // Creating communicators for columns 
  Subdims[0] = 1; 
  Subdims[1] = 0; 
  MPI_Cart_sub(GridComm, Subdims, &ColComm); 
} 

3. The function ProcessInitializa
l matrices and their blocks, initial

tion. This function sets the matrix sizes and allocates memory for storing the 
izes all the original problem data. In order to determine the elements of the 

yDataInitialization and RandomDataInitialization.  
initia
initial matrices we will use the functions  Dumm
// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock,  
  double* &pTemporaryAblock, int &Size, int &BlockSize ) { 
  if (ProcRank == 0) { 
    do { 
      printf("\nEnter size of the initial objects: "); 
      scanf("%d", &Size); 
   
      if (Size%GridSize != 0) { 
        printf ("Size of matricies must be divisible by the grid size! \n"); 
      } 
    } 
    while (Size%GridSize != 0); 
  } 
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
 
  BlockSize = Size/GridSize; 
 
  pAblock = new double [BlockSize*BlockSize]; 
  pBblock = new double [BlockSize*BlockSize]; 
  pCblock = new double [BlockSize*BlockSize]; 
  pTemporaryAblock = new double [BlockSize*BlockSize]; 
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  for (int i=0; i<BlockSize*BlockSize; i++) { 
    pCblock[i] = 0; 
  } 
  if (ProcRank == 0) { 
    pAMatrix = new double [Size*Size]; 
    pBMatrix = new double [Size*Size]; 
    pCMatrix = new double [Size*Size]; 
   / / DummyDataInitialization(pAMatrix, pBMatrix, Size); 
    RandomDataInitialization(pAMatrix, pBMatrix, Size); 
  }  
} 

4. The function ParallelResultCalculation. The function ParallelResultCalculation executes the parallel Fox 
algor

eme of parallel computations described in Exercise 3, it is necessary to carry out GridSize 
nsists of 

execute the step we should develop 

e may use the 
serial matrix 

(the function 

ithm of matrix multiplication. The matrix blocks and their sizes must be given to the function as its arguments. 
According to the sch

iterations in order to execute matrix multiplication with the use of Fox algorithm. Each of the iterations co
the execution of the following operations:  

w (to • The broadcast of the matrix A block along the processor grid ro
the function ABlockCommunication),  

• The multiplication of matrix blocks (to carry out the multiplication of matrix blocks w
function SerialResultCalculation, which was implemented in the course of the development of the 
multiplication program), 

The cyclic shift of the matrix B blocks along the c
kCommunication).  

olumn of the processor grid 
ВBloc

void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,  
  double* pBblock, double* pCblock, int BlockSize) { 
  for (int iter = 0; iter < GridSize; iter ++) { 
    // Sending blocks of matrix A to the process grid rows  
    ABlockCommunication (iter, pAblock, pMatrixAblock, BlockSize); 
    // Block multiplication 
    BlockMultiplication(pAblock, pBblock, pCblock, BlockSize); 
    // Cyclic shift of blocks of matrix B in process grid columns  
    BblockCommunication(pBblock, BlockSize); 
  } 
} 

5. The function AblockCommunication. The function broadcasts matrix A block
row of the grid. F

s to the process grid rows. 
or broadcasting the pivot 

ks transmitted to the processes at the 
eans of the function 
 process grid rows is 

of processes of each row separately.  

The leading process Pivot that responsible for sending is chosen in each 
sses are used their blocks pMatrixAblock (let us to remind that these blocproce

moment of the initial data distribution). The required communications are executed by m
n is collective, and its localization in separateMPI_Bcast. It should be noted that the operatio

provided by the communicators RowComm, which are created for the set 

// Broadcasting matrix A blocks to process grid rows  
ABlockCommunicationvoid  (int iter, double *pAblock, double* pMatrixAblock,  

  int BlockSize) { 
 
  // Defining the leading process of the process grid row  
  int Pivot = (GridCoords[0] + iter) % GridSize; 
   
  // Copying the transmitted block in a separate memory buffer 
  if (GridCoords[1] == Pivot) { 
    for (int i=0; i<BlockSize*BlockSize; i++) 
      pAblock[i] = pMatrixAblock[i]; 
  } 
   
  // Block broadcasting 
  MPI_Bcast(pAblock, BlockSize*BlockSize, MPI_DOUBLE, Pivot, RowComm); 
} 

6. The function BlockMultiplication. The function executes block multiplication of the matrices A and B. The 
easiest way to perform this multiplication is to use the serial matrix multiplication algorithm, described in 8.2. It 
should be noted that we provide the simplest variant of the function implementation for better understanding of the 
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program. These calculations may be optimized to decrease the computation time. This op
iciency of the processor cache, vectorizing the executed operations etc

timization may be aimed, 
.  

lic shift of blocks of the matrix B in the 
oring process NextProc in the process 

ich stands below it in the grid column. 
lace, which provides all the necessary 

ssible deadlocks, 
sses in the ring 

for instance, at increasing the eff

7. The function BblockCommunication. The function performs the cyc
ck to the upper neighbprocess grid columns. Each process transmits its blo

column and receives the block transmitted from the process PrevProc , wh
ata transmission is executed by means of the function MPI_SendRecv_repD

block transmissions using the same memory buffer pBblock. Besides, this function prevents po
neously by several procewhich happen when data transmission begins to be performed simulta

work topology.  net

// Cyclic shift of matrix B blocks in the process grid columns  
voi  int BlockSize) { d BblockCommunication (double *pBblock,
  MPI_Status Status; 
  int NextProc = GridCoords[0] + 1; 
  if ( GridCoords[0] == GridSize-1 ) NextProc = 0; 
  int PrevProc = GridCoords[0] - 1; 
  if ( GridCoords[0] == 0 ) PrevProc = GridSize-1; 
 
  MPI_Sendrecv_replace( pBblock, BlockSize*BlockSize, MPI_DOUBLE, 
    NextProc, 0, PrevProc, 0, ColComm, &Status); 
} 

8.4.6. putationa imen lts 
The com nal experime timat rallel algorithm ncy we d out und me 

conditions as described in 8.3.5. The resu experiments with the use of 4 ocessors n in 
Table 8.3.  

Table e Results of tatio ments for estim e Fox  efficiency  

Parallel Algorithm

Com l Exper t Resu
putatio
 those 

nts for es ing the pa
lts of the 

 efficie re carrie
 and 9 pr

er the sa
are give

 8.3 Th  the compu nal experi ating th  parallel algorithm

 
4 processors 9 processors Matrix Size Serial Algorithm 

Time Speed Up Time Speed Up 
500 0,8527 0,2190 3,8925 0,1468 5,8079

1000 12,8787 3,0910 4,1664 2,1565 5,9719
1500 43,4731 10,8678 4,0001 7,2502 5,9960
2000 103,0561 24,1421 4,2687 21,4157 4,8121
2500 201,2915 51,4735 3,9105 41,2159 4,8838
3000 347,8434 87,0538 3,9957 58,2022 5,9764
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Figure 8.7. edup of the Fox Parallel Algorithm with Respect to Numb cessors 

The comparison of t eriment execution time  the the ime ted according to 
expression 8.13, is shown e 8.4 an re 8.8. 

Table 8.4. The com n of the ntal an ical exec e for t allel algorithm  

Spe er of Pro

he exp  *
pT  and oretical t  pT , calcula

in Tabl d in Figu

pariso  experime d theoret ution tim he Fox par

 13



4 processors 9 processors 
Matrix Size 

pT  *
pT  pT  *

pT  

500 0,4217 0,2190 0,2200 0,1468 
1000 3,2970 3,0910 1,5924 2,1565 
1500 11,0419 10,8678 5,1920 7,2502 
2000 26,0726 24,1421 12,0927 21,4157 
2500 50,8049 51,4735 23,3682 41,2159 
3000 87,6548 87,0538 40,0923 58,2022 
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 Multiplication in Case of Checkerboard Data 
Decomposition  

e computations for calculating a block of the result matrix C will be 
chos

ribution scheme of the 

e subtasks in the course of computations can be performed by 
means of simpler communication operations.  

With regard to these remarks, the initialization stage of the Cannon algorithm includes the execution of the 
following data communication operations: 

− Blocks Aij, Bij are transmitted into each subtask (i,j); 
− For each subtask grid row i blocks of the matrix A are shifted (i-1) positions left; 
− For each subtask grid column j blocks of the matrix B are shifted (j-1) positions up. 

The data communication procedures, carried out in redistribution of matrix blocks, are examples of the cyclic shift 
operations – see Section 3. To illustrate the method of the initial data distribution we give an example of block 
placement for the subtask grid  3×3 in Figure 8.9. 

Figure 8.8. Experimental and theoretical execution time of the Fox parallel algorithm with 
respect to matrix size (checkerboard block matrix decomposition, 4 processors) 

8.5. Cannon Algorithm of Matrix

Let us discuss one more parallel algorithm of matrix multiplication based on checkerboard block matrix 
partitioning. 

8.5.1. Computation Decomposition 
As it was in case of the Fox algorithm, th

en as the basic computational subtask. As it has been mentioned previously, a subtask should have access to the 
elements of the horizontal stripe of the matrix A and the elements of the vertical stripe of the matrix B in order to 
compute the elements of the block of the matrix C.  

8.5.2. Analysis of the Information Dependencies 
The difference between the Cannon algorithm and the Fox method is the initial dist

multiplied matrix blocks among the subtasks. The initial block distribution in the Cannon algorithm is chosen so that 
the blocks located in the subtasks can be multiplied without additional data transmission. The block distribution may 
be provided so that transmitting blocks among th
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Figure 8.9. Redistributing the blocks of the initial matrices among the processes in the 

Cannon algorithm 

As a result of this initial distribution each subtask will have the blocks, which may be multiplied without 
additional data communications. Besides, obtaining the further blocks for all the subtasks may be provided by means 
of simple communication operations. After the operation of block multiplication each block of the matrix A should 
be transmitted to the preceding subtask to the left in the subtask grid rows, and each block of the matrix B should be 
transmitted to the preceding subtask up in the grid columns. It can be shown that the successive iterations of these 
cyclic shifts and the multiplication of the obtained matrix blocks lead to obtaining the corresponding blocks of the 
result matrix C in the basic subtasks. 

8.5.3. Scaling and Distributing Subtasks among Processors 
As in case of the Fox method the block size for the Cannon algorithm may be chosen so that the number of the 

basic subtasks and the number of processors becames the same. As the amount of computations in each subtask is 
identical, it provides uniform balance of the computational load among the processors.  

The scheme, which was used in the Fox algorithm - i.e. representing the available processors as a square grid 
and placing the basic subtasks (i,j)  on the corresponding processors Pi,j  of the processor grid– can be also applied 
for the Cannon algorithm. The adequate data communication network structure may be as previously provided at the 
physical level, if the topology of the computer system is a grid or a complete graph.  

8.5.4. Efficiency Analysis 
Before carrying out the efficiency analysis we should mention that only difference between the Cannon 

algorithm and the Fox method is the type of the communication operations performed in the course of computations. 
As a result, we will analyze only the communication complexity of the Cannon algorithm using the estimations of 
the execution time of the computational operations given in 8.4.4.  

According to the algorithm the block redistribution of the matrix A and matrix B is performed by means of the 
cyclic shift of the matrix blocks in the processor grid columns and rows at the stage of initialization. The time 
complexity of such data communication operation depends essentially on the network topology. For the complete 
graph topology all the blocks may be transmitted simultaneously (i.e. the duration of operation appears to be equal 
to the time of transmitting a matrix block between the neighboring processors). For the hypercube topology network 
the cyclic shift operation may require the execution of  log2q iterations. For the ring topology the necessary number 
of iteration appears to be equal to q-1. The methods of executing the cyclic shift operation are discussed in detail in 
Section 3. To estimate the communication complexity of the initialization stage we will use the complete graph 
topology as it corresponds to cluster computational systems. As a result the execution time of the initial block 
redistribution may be estimated as follows:  

( ) ( )βα /)(2 21 pnwcommTp ⋅+⋅=         (8.14) 

(the expression n2/p defines the sizes of the transmitted blocks, and the coefficient 2 corresponds to two executed 
operations of the cyclic shift ).  

Let us estimate the overhead of data communications among the processors during the computation stage of 
the Cannon algorithm. At each algorithm iteration after multiplying the matrix blocks the processors transmit the 
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blocks to the preceding processors in the rows (for blocks of the matrix A) and the columns (for blocks of the matrix 
B) of the processor grid. These operations may be performed by the processors in parallel. Thus, the duration of the 
communication operations is as follows:  

( ) ( )βα /)(2 22 pnwcommTp ⋅+⋅= .        (8.15) 

As the number of the Cannon algorithm iterations is equal to q, the total execution time of parallel 
computation, with regard to estimation 8.13, may be evaluated by means of the following expression:  

( ) )/)/()(22()]/(1/2)/[( 222 βατ pnwqpnqnpnqTp +++⋅+−⋅=     (8.16) 

(it should be reminded that the parameter pq =   defines the size of the processor grid). 

8.5.5. Computational Experiments Results 
The computational experiments for estimation of the parallel algorithm efficiency were carried out under the 

same conditions as those described in 8.3.5. The results of the experiments for 4 and 9 processors are given in Table 
8.5.  

 
Table 8.5. The results of the computational experiments for estimating the Cannon parallel algorithm 

efficiency 

Parallel Algorithm 
4 processors 9 processors Matrix Size Serial Algorithm 

Time Speed Up Time Speed Up 
1000 12,8787 3,0806 4,1805 1,1889 10,8324
1500 43,4731 11,1716 3,8913 4,6310 9,3872
2000 103,0561 24,0502 4,2850 14,4759 7,1191
2500 201,2915 53,1444 3,7876 23,5398 8,5511
3000 347,8434 88,2979 3,9394 36,3688 9,5643

 

0

2

4

6

8

10

12

4 9

Number of Processors

Sp
ee

d 
U

p

1000

1500

2000

2500

3000

 
Figure 8.10. Speedup of the Cannon parallel algorithm with respect to Number of Processors 

The comparison of the experiment execution time  and theoretical time , calculated according to 
expression 8.16 is given in Table 8.6 and Figure 8.13.  

*
pT pT

Table 8.6. The comparison of the experimental execution time and the theoretical execution time for the 
Cannon parallel algorithm  

4 processors 9 processors 
Matrix Size 

pT  *
pT  pT  *

pT  
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1000 3,4485 3,0806 1,5669 1,1889 
1500 11,3821 11,1716 5,1348 4,6310 
2000 26,6769 24,0502 11,9912 14,4759 
2500 51,7488 53,1444 23,2098 23,5398 
3000 89,0138 88,2979 39,8643 36,3688 
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Figure 8.11. Experimental and theoretical execution time of the Cannon parallel algorithm 

with respect to matrix size (checkerboard block matrix decomposition, 4 processors) 

8.6. Summary 
The Section discussed three parallel methods of matrix multiplication. The first algorithm is based on the 

block-striped matrix distribution among the processors. Two variants of this method are described in the Section. 
The first variant is based on different partitioning of the multiplied matrices when the first matrix (the matrix A) is 
partitioned into horizontal striped, and the second matrix (the matrix B) is partitioned into vertical stripes. In case of 
the second variant both matrices are partitioned into horizontal stripes.  

This Section also discussed the well-known the Fox and the Cannon algorithms, based on the checkerboard 
block matrix decomposition. Using the same schemes of matrix decomposition these algorithms differ from each 
other in the data communication operations. For the Fox algorithm matrix block broadcasting and matrix block 
cyclic shift are performed in the course of computations; while in Cannon algorithm only the cyclic shift operation is 
performed.  

The difference in the ways of data partitioning leads to different topologies of communication network, which 
enhance the efficiency of the parallel algorithm execution. Thus, the algorithms based on the block-striped data 
decomposition are designed at the hypercube or the complete graph topology. For the algorithms based on the 
checkerboard block data decomposition the grid topology is the most efficient.  

The summary graph in Figure 8.12 presents the speedup values obtained as a result of the computational 
experiments for all the discussed algorithms. The computations have shown that increasing the number of processors 
improves the checkerboard block multiplication algorithm efficiency. 
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Figure 8.12. Speedup of the matrix parallel multiplication algorithms according with computational 

experiments (4 processors) 

8.7. References 
The problem of matrix multiplication is broadly discussed in science. As additional training materials we may 

recommend the works by Kumar, et al. (1994) and Quinn (2004). The problems of parallel execution of matrix 
multiplication are also discussed in Dongarra, et al. (1999). 

Blackford, et al. (1997) may be useful for considering some aspects of parallel software development. This 
book describes the software library of numerical methods ScaLAPACK, which is well-known and widely used.  

8.8. Discussions 
1. What is the statement of the matrix multiplication problem?  
2. Give the examples of the problems, which make use of the matrix multiplication operations. 
3. Give the examples of various sequential algorithms of matrix multiplication operations. Is the complexity 

various in case of different algorithms? 
4. What methods of data distribution are used in developing parallel algorithms of matrix multiplication? 
5. Describe the general schemes of the parallel algorithms considered in the Section. 
6. Analyze and compute the efficiency of the block-striped algorithm for horizontal partitioning of the 

multiplied matrices. 
7. What information communications are carried out for the algorithms in case of the block-striped data 

decomposition?  
8. What information interactions are carried out in case of the checkerboard block matrix multiplication 

algorithms? 
9. What communication network topology is efficient for each of the algorithms discussed? 
10. Which of the discussed algorithms requires the least memory size and which of them requires the greatest 

necessary memory size? 
11. Which of the discussed algorithms has the best speedup and efficiency? 
12. Estimate the possibility to carry out matrix multiplication as a sequence of matrix-vector operations. 
13. Give the general description of the software implementation for the Fox algorithm. In what way may be 

differences of software implementation of other algorithms? 
14. What functions of the library MPI appear to be necessary in the software implementation of the 

algorithms? 

8.9. Problems 
1. Develop the implementation of two block-striped algorithms of matrix multiplication. Compare the 

execution time of these algorithms.  
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2. Develop the Cannon algorithm implementation. Formulate the theoretical estimation of the algorithm 
execution time. Execute the computational experiments. Compare the experimental results with the theoretical 
estimations.  

3. Develop the implementation of the checkerboard block algorithm of matrix multiplication, which may be 
carried out for rectangular processor grids. 

4. Develop the implementation of matrix multiplication using the previously developed programs of matrix-
vector multiplication.  
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