
9. Parallel Methods for Solving Linear Equation Systems
9.1. Problem Setting ...1
9.2. The Gauss Algorithm...2

9.2.1. Sequential Algorithm...2
9.2.1.1 Gaussian Elimination ..2
9.2.1.2 Back Substitution ..3

9.2.2. Computation Decomposition...4
9.2.3. Analysis of Information Dependencies ...4
9.2.4. Scaling and Distributing Subtasks among Processors ...4
9.2.5. Efficiency Analysis ..5
9.2.6. Software Implementation ..6
9.2.7. Computational Experiment Results ..9

9.3. The Conjugate Gradient Method ...11
9.3.1. Sequential Algorithm...11
9.3.2. Parallel Algorithm..12
9.3.3. Efficiency Analysis ..12
9.3.4. Computational Experiment Results ..13

9.4. Summary ...14
9.5. References ..15
9.6. Discussions..15
9.7. Exercises ...15

Linear equation systems appear in the course of solving a number of applied problems, which are formulated

by differential, integral equations or by systems of non-linear (transcendent) equations. They may appear also in the
problems of mathematical programming, statistical data processing, function approximation, or in discretization of
boundary differential problems by methods of finite differences or of finite elements, etc.

The coefficient matrices of linear equation systems may be of various structure and have various
characteristics. The matrices of the systems solved may be dense and their order may reach several thousands of
rows and columns. In solving many problems there can be the systems, which possess symmetric positively definite
stripe matrices with the order of tens of thousands and the width of the stripe of the several thousands elements. And
finally in consideration of a great number of problems there may appear systems of linear equations with sparse
matrices of the order of millions of columns and rows.

This Section has been written based essentially on the teaching materials given in Quinn (2004).

9.1. Problem Setting
A l inear equat ion with n independent unknowns x0, x1, …, xn-1 may be described by means of the

expression
bxaxaxa nn =+++ −− 111100 ... (9.1)

where values a0, a1, …, an-1 and b are constant.
A set of n linear equations

111,111,100,1

111,111,100,1

011,011,000,0

...
...

...
...

−−−−−−

−−

−−

=+++

=+++
=+++

nnnnnn

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

 (9.2)

is called a system of linear equations or a linear system. In matrix notation this system may be written as
bAx = ,

where A=(ai,j) is a real matrix of size n×n, and b and x are vectors of n elements.
The problem of solving a linear equation system for the given matrix A and the vector b is considered to be the

problem of searching the value of unknown vector x whereby all the system equations hold.

9.2. The Gauss Algorithm
Gauss method is a well known direct algorithm of solving systems of linear equations, the coefficient matrices

of which are dense. If a system of linear equations is nondegenerate, then the Gauss method guarantees solving the
problem with the error determined by the computation accuracy. The main concept of the method is a modification
of matrix A by means of equivalent transformations (which do not change the solution of system (9.2)) to a triangle
form. After that the values of the desired unknown variables may be obtained directly in an explicit form.

The subsection gives the general description of the Gauss method, which is sufficient for its initial
understanding and which allows to consider possible methods of parallel computations in solving linear equation
systems. A more detailed description and more rigorous consideration of accuracy issues for the obtained solutions
may be found, for instance, in Kahaner, Moler and Nash (1988), Bertsekas and Tsitsiklis (1989) etc.

9.2.1. Sequential Algorithm
The Gauss method is based on the possibility to carry out the transformation of linear equations, which do not

change the solution of the system under consideration (such transformations are referred to as equivalent). They
include the following transformations:

• The multiplication of any equation by a nonzero constant,
• The permutation of equations,
• Addition of any system equation to other equation.
The Gauss method includes sequential execution of two stages. At the first stage (the Gaussian elimination

stage) the initial system of linear equations is reduced to the upper triangle form by means of sequential elimination
of unknowns:

cxU = ,

where the coefficient matrix of the obtained system looks as follows

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−

−

−

1,1

1,11,1

1,01,00,0

...00

...

...0

...

nn

n

n

u

uu
uuu

U .

At the back substitution (the second stage of the algorithm) the values of unknown variables are calculated. The
value of the variable xn - 1 may be calculated from the last equation of the transformed system. After that it becomes
possible to find the value of the variable xn - 2 from the second to last equation etc.

9.2.1.1 Gaussian Elimination
The Gaussian elimination stage consists in sequential elimination of the unknowns in the equations of the

linear equation system being solved. At iteration i , 0≤ i<n-1, of the method the variable x i is eliminated for all
the equations with numbers k greater than i (i.e. i< k≤ n-1,). In order to do so the row i multiplied by the constant
(a /ak i i i) is subtracted from these equations so that the resulting coefficient of unknown x i in the rows appears zero.
All the necessary computations may be described by the following relations:

10,1,1
,)/('
,)/('

−<≤−≤<−≤≤
⋅−=
⋅−=

ninkinji
baabb
aaaaa

iiikikk

ijiikikjkj

(it should be noted that similar computations are performed over the elements of the vector b as well).
Let us demonstrate the Gaussian elimination stage using the following system of linear equations as an

example:

2664
18572
123

210

210

210

=++
=++
=++

xxx
xxx
xxx

.

At the first iteration the unknown x0 is eliminated in the second and the third rows. For this the first row multiplied
correspondingly by 2 and by 1 is subtracted from these rows. After these transformations the system looks as
follows:

254
16
123

21

21

210

=+
=+
=++

xx
xx
xxx

.

 2

As a result, we need to perform the last iteration and eliminate the unknown x1 in the third equation. For this it is
necessary to subtract the second row. In the final form the system looks as follows:

93
16
123

2

21

210

=
=+
=++

x
xx
xxx

.

Figure 9.1 shows the general scheme of the data state at i-th iteration of the Gaussian elimination stage. All the
coefficients of the unknowns, which are located lower than the main diagonal and to the left of column i are already
zero. At i-th iteration of the Gaussian elimination stage the coefficients of column i located lower than the main
diagonal are set to zero. It is done by means of subtracting the row i multiplied by the adequate nonzero constant.
After executing (n-1) similar iterations the matrix of linear equation coefficients is transformed in the upper triangle
form.

The coefficients already
set to 0

The coefficient which will
not be changed

The pivot row

The coefficients, which will
be changed

Figure 9.1. The iteration of the Gaussian elimination stage

During the execution of the Gaussian elimination stage the row, which is used for eliminating unknowns is
called the pivot one, and the diagonal element of the pivot row is called the pivot element. As it can be noted it is
possible to perform computations only if the leading element is a nonzero value. Moreover, if the pivot element ai,i
has a small value, then the division and the multiplication of rows by this element may lead to accumulation of the
computational errors and the computational instability of the algorithm.

A possible way to avoid this problem may consist in the following. At each iteration of the Gaussian
elimination stage it is necessary to determine the coefficient with the maximum absolute value in the column, which
corresponds to the eliminated variable, i.e.

ki
nki

ay
1

max
−≤≤

= ,

and choose the row, which holds this coefficient, as the pivot one (this scheme of choosing the pivot value is called
the partial pivoting scheme).

The computational complexity of the Gaussian elimination stage with partial pivoting is the order O(n3).

9.2.1.2 Back Substitution
After the matrix of the coefficients has been reduced to the upper triangle form, it becomes possible to find the

values of the unknowns. The value of the variable xn-1 may be calculated from the last equation of the transformed
system. After that it is possible to determine the variable xn-2 from the second to last equation and so on. In the
general form the computations performed during the back substitution stage may be presented by means of the
following relations:

0,...,3,2,/)(

,/
1

1

1,111

−−=−=

=

∑
−

+=

−−−−

nniaxabx

abx
n

ij
iijijii

nnnn

.

It may be explained as previously using the example of the linear equation systems discussed in subsection
9.2.1.1

93
16
123

2

21

210

=
=+
=++

x
xx
xxx

.

From the last equation of the system, the value of the variable x2 is 3. As a result, it becomes possible to solve the
second equation and to find the value of the unknown x1=13, i.е.

3
13
123

2

1

210

=
=
=++

x
x

xxx
.

 3

The value of the unknown x0, which is equal to -44, is determined at the last iteration of the back substitution stage.
With regard to the following parallel execution, it is possible to note that the obtained unknown values may be

used for recalculations in all the system equations in parallel (these operations may be performed in the equations
simultaneously and independently). Thus, in the example under consideration the system after the determination of
the value of the unknown x2 may be reduced to the following form:

3
13

53

2

1

10

=
=

−=+

x
x
xx

The computational complexity of the back substitution stage is O(n2).

9.2.2. Computation Decomposition
In close consideration of the Gauss method it is possible to note that all the computations are reduced to

uniform computational operations on the rows of coefficient matrix of the linear equation system. As a result, the
parallel implementation of the Gauss method may be based on the data parallelization principle. All the
computations related with processing a row of the matrix A and the corresponding element of the vector b may be
taken as the basic computational subtask in this case.

9.2.3. Analysis of Information Dependencies
Let us consider the general scheme of parallel computations and the information dependencies among the basic

subtasks, which appear in the course of computations.
For the execution of the Gaussian elimination stage it is necessary to perform (n-1) iterations of eliminating the

unknown variables in order to transform the matrix of coefficients A to the upper triangle form.
The execution of iteration i , 0≤ i<n-1, of the Gaussian elimination stage includes a number of sequential

operations. First of all, at the very beginning of the iteration it is necessary to select the pivot row, which (if the
partial pivoting scheme is used) is determined by the search of the row with the greatest absolute value among the
elements of the column i , which corresponds to the eliminated variable x i . As the rows of matrix A are distributed
among subtasks, the subtasks with the numbers k, k>i, should exchange their coefficients of the eliminated
variable x i for the maximum value search. After all the necessary data has been accumulated in each subtask, it is
possible to determine, which of them holds the pivot row, and which value is the pivot element.

To carry out the computations further the pivot subtask has to broadcast its pivot row of the matrix A and the
corresponding element of the vector c to all the other subtasks with the numbers k, k>i . After the reception of the
pivot row the subtasks perform the subtraction of rows, thus, providing the elimination of the corresponding variable
x i .

During the execution of the back substitution stage the subtasks perform the necessary computations for
calculating the value of the unknowns. As soon as some subtask i , 0≤ i<n-1, determines the value of its variable
x i , this value must be broadcasting to all the subtasks with the numbers k, k<i. After communications the subtasks
substitute the variables x i for the obtained value and modify the elements of the vector b.

9.2.4. Scaling and Distributing Subtasks among Processors
In case when the size of the linear equation system appears to be grater greater than the number of the available

processors (i.e. p<n), the basic subtasks should be aggregated by uniting several matrix rows in a single subtask.
However, the application of the sequential scheme of data partitioning, which was applied in sections 7 and 8, for
parallel solving the systems of linear equations may lead to an unequal computational load of processors. In the
course of eliminating (the Gaussian elimination stage) or calculating (the back substitution stage) the unknown
variables the computations for an increasing part of processors will be terminated and the processor will appear to be
idle. A possible solution of the balancing problem may consist in the use of cyclic striped scheme (see Section 7) for
distributing data among the aggregated subtasks. In this case matrix A is divided into sets (stripes) of rows of the
following form (see Figure 9.2):

pmkkjjpiiaaaAAAAA jiiii
T

p k
/,0,),,...,,(,),...,,(

110120 =<≤+===
−− .

 4

Figure 9.2. The example of using the cyclic striped scheme for partitioning matrix rows among 3

processors

The comparison of the data decomposition scheme and computations to be executed in the Gauss method allows to
conclude that the use of the cyclic striped scheme makes possible to provide a better balancing of the computational
load among the subtasks.

The distribution of the subtasks among the processors must take into account the data communications
performed by the Gauss method. One-to-all broadcast is the main form of the information transmissions of the
subtasks. As a result, the data communication network topology must be a hypercube or a complete graph in order to
execute efficiently the required information transmissions among the basic subtasks.

9.2.5. Efficiency Analysis
Let us estimate the time complexity of the Gauss method. As previously, let n be the order of the linear

equation system being solved, and p, p<n, be the number of processors used. Thus, the coefficient matrix A is of
n×n size and, correspondingly, n/p is the size of matrix stripe on each processor.

First of all, it is easy to demonstrate that the total execution time for the sequential variant of the Gauss method
is the following:

23
1 3/2 nnT += . (9.3)

Let us determine the complexity of the parallel variant of the Gauss method. In the Gaussian elimination stage
each processor should choose the maximum values in the column with the eliminated unknown within its stripe.
This computations should be executed at each iteration in order to choose the pivot row. The initial size of the
stripes is equal to n/p . As the unknowns are eliminated the number of rows in the stripes to be processed is
gradually reduced. The current size of the stripes may be estimated approximately as (n-i)/p , where i , 0≤ i<n-1,
is the iteration number of the Gaussian elimination stage being performed. After the obtained maximum values are
accumulated on each processor, the pivot row should be determined and transmitted to all processors. Then each
processor must perform the subtraction of the pivot row from each row of its remaining part of the matrix A. The
number of row elements to be processed is also reduced as the unknowns are eliminated and the current number of
the row elements to be computed is estimated by the value (n-i) . Thus, the complexity of the row subtraction can be
estimated as 2·(n-i) operations (before being subtracted the pivot row is multiplied by the scaling value aik/aii). With
regard to the number of iterations performed the total number of operations for the parallel variant of the Gaussian
elimination stage is determined by the following expression:

() () () []∑∑
−

=

−

=

−+⋅−=⎥
⎦

⎤
⎢
⎣

⎡
−⋅

−
+

−
=

2

0

2
2

0

1)(2)(12
n

i

n

i
p inin

p
in

p
in

p
inT .

At each iteration of the back substitution stage after broadcasting the computed value of the current unknown each
processor have to recalculate the values of its part of the matrix A and the vector b. Hence, the time complexity of
the parallel variant of the back substitution stage can be estimated as the following value:

()∑
−

=

−⋅=
2

0

2 /2
n

i
p pinT .

After summation of the obtained expressions we get the following:

[] [] ∑∑∑∑
=

−

=

−

=

−

=

+=−+−=−+−+⋅−=
n

i

n

i

n

i

n

i
p ii

p
inin

p
in

p
inin

p
T

2

2
2

0

2
2

0

2

0

2)23(1)(2)(31)(2)(2)(1 .

As a result of the analysis, the speedup and efficiency characteristics for the parallel variant of the Gauss
method may be evaluated by means of the following formulas:

 5

∑
=

+

+
= n

i

p

ii
p

nnS

2

2

23

)23(1
)32(,

∑
=

+

+
= n

i

p

ii

nnE

2

2

23

)23(

)32(. (9.4)

The obtained relations are rather complicated for analyzing. Alongside with this it is possible to show that the
parallel algorithm complexity is of order ~(2n /3)/p3 . As a result, we can conclude that computational load
balancing among the processor is approximately uniform.

Let us estimate the overhead of data communications among the processors. At the Gaussian elimination stage
the processors exchange the locally obtained maximum values in the column with the eliminated variable in order to
determine the pivot row at each iteration. The execution of this operation simultaneously with the determination of
the maximum value among the accumulated values may be provided by the function MPI_Allreduce of MPI library.
As it can be shown this operation may be executed in log p 2 steps. Now it is possible to estimate the time necessary
to execute reduction operation by means of the following expression:

())/(log)1(2
1 βα wpncommTp +⋅⋅−= ,

where, as previously, α is the communication latency, β is the network bandwidth, w is the size of the data element
to be transmitted.

Additionally a each iteration of the Gaussian elimination stage the selected pivot row should be transmitted to
all processor. The complexity of this data communication operation is equal to the following value:

())/(log)1(2
2 βα nwpncommTp +⋅⋅−= .

At each iteration of the back substitution stage the computed value of the current unknown has to be distributed
among all the processors. The total execution time of these operations may be estimated as follows:

())/(log)1(2
3 βα wpncommTp +⋅⋅−= .

Finally with regard to all the obtained relations the time complexity of the parallel variant of the Gauss method
is, , the following:

)/)2(3(log)1()23(1
2

2

2 βατ ++⋅⋅−++= ∑
=

nwpnii
p

T
n

i
p , (9.5)

where τ is the execution time of the basic computational operation.

9.2.6. Software Implementation
Let us discuss a possible variant of parallel Gauss method implementation for solving a system of linear

equations. It should be noted that program code of several modules is not given as its absence does not influence the
understanding of the general scheme of parallel computations.

1. The main function. The main function implements the computational method scheme by sequential calling
out the necessary subprograms.

// Program 9.1
// The Gauss Algorithm for solving the systems of linear equations
int ProcNum; // Number of the available processes
int ProcRank; // Rank of the current process
int *pParallelPivotPos; // Number of rows selected as the pivot ones
int *pProcPivotIter; // Number of iterations, at which the processor
 // rows were used as the pivot ones

int* pProcInd; // Number of the first row located on the processes
int* pProcNum; // Number of the linear system rows located on the processes

void main(int argc, char* argv[]) {
 double* pMatrix; // Matrix of the linear system
 double* pVector; // Right parts of the linear system
 double* pResult; // Result vector
 double *pProcRows; // Rows of the matrix A
 double *pProcVector; // Block of the vector b
 double *pProcResult; // Block of the vector x
 int Size; // Size of the matrix and vectors
 int RowNum; // Number of the matrix rows

 6

 setvbuf(stdout, 0, _IONBF, 0);

 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &ProcRank);
 MPI_Comm_size (MPI_COMM_WORLD, &ProcNum);

 if (ProcRank == 0)
 printf("Parallel Gauss algorithm for solving linear systems\n");

 // Memory allocation and data initialization
 ProcessInitialization(pMatrix, pVector, pResult,
 pProcRows, pProcVector, pProcResult, Size, RowNum);

 // The execution of the parallel Gauss algorithm
 DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum);

 ParallelResultCalculation(pProcRows, pProcVector, pProcResult,
 Size, RowNum);

 ResultCollection(pProcResult, pResult);

 TestResult(pMatrix, pVector, pResult, Size);

 // Computational process termination
 ProcessTermination(pMatrix, pVector, pResult, pProcRows, pProcVector,
 pProcResult);

 MPI_Finalize();
}

It is necessary to explain the use of auxiliary arrays. The elements of the array pParal le lPivotPos
determine the numbers of the matrix rows selected as the pivot ones according to the Gaussian elimination
iterations. This is exactly the order in which the back substitution iterations should be executed in order to find the
values of the unknowns of a linear equation system. The array pParallelPivotPos is global and its every change
in any process requires broadcasting the changed data to all the program processes.

The elements of pProcPivotI ter determine the numbers of the Gaussian elimination iterations, at which the
process rows were used as the pivot ones (i.e. the row i of the process was selected the pivot one at the i terat ion
pProcPivotI ter[i]). The initial values of the array elements are set to zero. Thus, the zero value of
pProcPivotIter[i] element is the sign that the row i of the process is still to be processed. Besides, it should be noted
that iteration numbers stored in pProcPivotI ter elements additionally signify the numbers of the unknowns,
which must be determined by means of the equations, which correspond to the rows. The array pProcPivotI ter is
local for each process.

The function ProcessIni t ia l izat ion determines the initial data of the problem being solved (the number of
unknowns), allocates memory for storing the data, inputs the coefficient matrix of the linear equation system and the
vector of the right part (or it forms the data by means of random number generator). Function DataDistr ibut ion
distributes the data among the processors.

The function ResultCollect ion accumulates separate parts of the vector of the unknowns from all the
processes.

The function ProcessTerminat ion executes the necessary output of the results of problem solving and
releases all the previously allocated memory for storing the data.

The implementation of all the above mentioned functions may be performed on the analogy with the examples,
which have been discussed earlier and is given to the reader a training exercise.

2. The function ParallelResultCalculation. This function contains the calls of the functions for executing the
Gauss algorithm stages.

/ Function for execution of the parallel Gauss algorithm
void ParallelResultCalculation(double* pProcRows, double* pProcVector,
 double* pProcResult, int Size, int RowNum) {
 // Gaussian elimination
 ParallelGaussianElimination (pProcRows, pProcVector, Size, RowNum);
 // Back substitution
 ParallelBackSubstitution (pProcRows, pProcVector, pProcResult, Size,
 RowNum);

 7

}

3. The function ParallelGaussianElimination. It executes the parallel variant of the Gaussian elimination
stage.

void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum) {
 double MaxValue; // Value of the pivot element of thе process
 int PivotPos; // Position of the pivot row in the process stripe
 // Structure for the pivot row selection
 struct { double MaxValue; int ProcRank; } ProcPivot, Pivot;

 // pPivotRow is used for storing the pivot row and the corresponding
 // element of the vector b
 double* pPivotRow = new double [Size+1];

 // The iterations of the Gaussian elimination stage
 for (int i=0; i<Size; i++) {

 // Calculating the local pivot row
 double MaxValue = 0;
 for (int j=0; j<RowNum; j++) {
 if ((pProcPivotIter[j] == -1) &&
 (MaxValue < fabs(pProcRows[j*Size+i]))) {
 MaxValue = fabs(pProcRows[j*Size+i]);
 PivotPos = j;
 }
 }
 ProcPivot.MaxValue = MaxValue;
 ProcPivot.ProcRank = ProcRank;

 // Finding the pivot process (process with the maximum value of MaxValue)
 MPI_Allreduce(&ProcPivot, &Pivot, 1, MPI_DOUBLE_INT, MPI_MAXLOC,
 MPI_COMM_WORLD);

 // Broadcasting the pivot row
 if (ProcRank == Pivot.ProcRank){
 pProcPivotIter[PivotPos]= i; //iteration number
 pParallelPivotPos[i]= pProcInd[ProcRank] + PivotPos;
 }
 MPI_Bcast(&pParallelPivotPos[i], 1, MPI_INT, Pivot.ProcRank,
 MPI_COMM_WORLD);

 if (ProcRank == Pivot.ProcRank){
 // Fill the pivot row
 for (int j=0; j<Size; j++) {
 pPivotRow[j] = pProcRows[PivotPos*Size + j];
 }
 pPivotRow[Size] = pProcVector[PivotPos];
 }
 MPI_Bcast(pPivotRow, Size+1, MPI_DOUBLE, Pivot.ProcRank, MPI_COMM_WORLD);

 ParallelEliminateColumns(pProcRows, pProcVector, pPivotRow, Size,
 RowNum, i);
 }
}

The function ParallelEl iminateColumns subtracts the pivot row from the process rows, which have not
been used as the pivot ones yet (i.e. rows for which the elements of the array pProcPivotIter are equal to zero).

4. The function ParallelBackSubstitution. This function executes the parallel variant of the back substitution
stage.

void ParallelBackSubstitution (double* pProcRows, double* pProcVector,
 double* pProcResult, int Size, int RowNum) {
 int IterProcRank; // Rank of the process with the current pivot row
 int IterPivotPos; // Position of the pivot row of the process

 8

 double IterResult; // Calculated value of the current unknown
 double val;

 // Iterations of the back substitution stage
 for (int i=Size-1; i>=0; i--) {

 // Calculating the rank of the process, which holds the pivot row
 FindBackPivotRow(pParallelPivotPos[i], Size, IterProcRank, IterPivotPos);

 // Calculating the unknown
 if (ProcRank == IterProcRank) {
 IterResult = pProcVector[IterPivotPos]/pProcRows[IterPivotPos*Size+i];
 pProcResult[IterPivotPos] = IterResult;
 }
 // Broadcasting the value of the current unknown
 MPI_Bcast(&IterResult, 1, MPI_DOUBLE, IterProcRank, MPI_COMM_WORLD);

 // Updating the values of the vector b
 for (int j=0; j<RowNum; j++)
 if (pProcPivotIter[j] < i) {
 val = pProcRows[j*Size + i] * IterResult;
 pProcVector[j]=pProcVector[j] - val;
 }
 }
}

The back substitution execution consists of Size iterations. At each iteration it is necessary to determine the
row, which makes possible to calculate the value of the next result vector element. The row number is stored in the
array pParallelPivotIter. Using the row number The function FindBackPivotRow determines the number of
process, where the row is stored, and the number of the row in the stripe pProcRows of the process.

9.2.7. Computational Experiment Results
The computational experiments for the estimation of the parallel variant of the Gauss method efficiency for

solving the systems of linear equations were carried out under the conditions specified in 7.6.5. In brief terms these
conditions are the following.

The experiments were carried out on the computational cluster on the basis of processors Intel XEON 4
EM64T, 3000 Mhz and Gigabit Ethernet under OS Microsoft Windows Server 2003 Standard x64 Edition.

The duration τ of the basic computational operation has been estimated experimentally by solving several
systems of linear equations using the sequential algorithm. The computation time obtained that way was then
divided by the total number of the executed operations. As a result the value 4.7 nsec was obtained for the parameter
τ. The experiments performed for estimating the data communication network parameters demonstrated the values
of the latency α and the bandwidth β correspondingly 47 msec and 53.29 Mbyte/sec. All the computations were
carried out with the numerical values of double type, i.e.value w is equal to 8 bytes.

The results of the computational experiments are given in Table 9.1. The experiments were carried out with the
use of 2, 4 and 8 processors.

Table 9.1. The results of the computational experiments for the parallel Gauss plgorithm

Parallel Algorithm
2 processors 4 processors 8 processors

Matrix
Size Serial Algorithm

Time Speed Up Time Speed Up Time Speed Up
500 0,36 0,3302 1,0901 0,5170 0,6963 0,7504 0,4796

1000 3,313 1,5950 2,0770 1,6152 2,0511 1,8715 1,7701
1500 11,437 4,1788 2,7368 3,8802 2,9474 3,7567 3,0443
2000 26,688 9,3432 2,8563 7,2590 3,6765 7,3713 3,6204
2500 50,125 16,9860 2,9509 11,9957 4,1785 11,6530 4,3014
3000 85,485 28,4948 3,0000 19,1255 4,4696 17,6864 4,8333

 9

0

1

2

3

4

5

6

2 4 8

Number of Processors

Sp
ee

d
U

p

500

1000

1500

2000

2500

3000

Figure 9.3. Speedup of the parallel Gauss algorithm for solving linear equation systems (rowwise

block-striped matrix decomposition)

The comparison of the experimental execution time and the theoretical estimation from (9.5) is given
in Table 9.2 and in Figure. 9.4.

*
pT pT

Table 9.2. The comparison of the experimental execution time and the theoretical estimation for the parallel
Gauss algorithm

2 processors 4 processors 8 processors
Matrix Size

pT *
pT pT *

pT pT *
pT

500 0,2393 0,3302 0,2819 0,5170 0,3573 0,7504
1000 1,3373 1,5950 1,1066 1,6152 1,1372 1,8715
1500 4,0750 4,1788 2,8643 3,8802 2,5345 3,7567
2000 9,2336 9,3432 5,9457 7,2590 4,7447 7,3713
2500 17,5941 16,9860 10,7412 11,9957 7,9628 11,6530
3000 29,9377 28,4948 17,6415 19,1255 12,3843 17,6864

0

5

10

15

20

25

30

35

500 1000 1500 2000 2500 3000

Matrix Size

Ti
m

e Experiment

Model

Figure 9.4. Theoretical and experimental execution time with respect to matrix size (rowwise

block-striped matrix decomposition, 2 processors)

 10

9.3. The Conjugate Gradient Method
Let us consider another approach to solving linear equation systems. According to this approach the sequence

of the approximate solutions x0 , x1 ,…, xk ,… is calculated for approximating the exact solution x* of system
Ax=b. In addition the computations are performed in such a way that each next approximation gives the estimation
of the exact solution with a decreasing error and, as a result, in case of continuous computations the estimation for
the exact solution may be obtained with any desired degree of accuracy. Such iterative methods of solving linear
equation systems are widely used in the practice of computations. Among advantages of these methods it should be
mentioned a smaller amount (in comparison, for instance, to the Gauss method) of the computations necessary for
solving the sparse linear equation systems, possibility of faster obtaining the initial approximation of the exact
solution, the availability of efficient methods of parallel computations. Additional information and the description of
these methods, consideration of the issues of convergence and accuracy of the obtained solutions may be found, for
instance, in Bertsekas and Tsitsiklis (1989)

The conjugate gradient method is one of the best known iterative algorithms. This method may be used for
solving a symmetric positive definite linear equation system of high dimensionality.

Let’s recall that a matrix A is symmetric if it coincides with its transpose, i.e. А=АТ. A matrix A is positive
definite, if takes place for each vector x. 0>xAxT

It is known (see, for instance, Bertsekas and Tsitsiklis (1989)), that after the execution of n algorithm iterations
(n is the order of the linear equation system being solved), the next approximation xn coincide with the exact
solution.

9.3.1. Sequential Algorithm
If matrix A is symmetric and positive definite, then the function

cbxxAxxq TT +−⋅⋅=
2
1)((9.6)

has a single minimizer at point x* , which coincides with the solution of the linear equation system (9.2). The
conjugate gradient method is one from wide group of iterative algorithms, which allow to find the solution (9.2) by
means of minimizing function q(x).

The iteration of conjugate gradient method consists in computing the next approximation to the exact solution
in accordance to the following rule:

kkkk dsxx += −1 , (9.7)
i.e., the new value of approximation xk is computed with regard to the approximation obtained at the pervious step
xk - 1 , a scalar step sk and a direction vector dk .

Before the execution of the first iteration the vectors x0 and d0 are assumed to be equal to zero and the value –
b is assigned to vector g0 . Then at each iteration the computation of the next approximation value xk includes the
execution of the following four steps:

Step 1: Compute the gradient:

bxAg kk −⋅= −1 ; (9.8)

Step 2: Compute the direction vector:
()

()
1

11 ,)(
,)(−

−−
+−= k

kTk

kTk
kk d

gg
gggd , (9.9)

where (gT,g) is the inner product of vectors;
Step 3: Compute the step value:

()
kTk

kk
k

dAd
gds
⋅⋅

=
)(

, ; (9.10)

Step 4: Compute the new approximation:
kkkk dsxx += −1: . (9.11)

As it can be noted, these expressions include two operations of matrix-vector multiplication, four operations of
inner product and five vector operations. As a result, the total number of operations executed at each iteration is the
following:

t1=2n2+13n.
As it has been previously mentioned, to obtain the exact solution for linear equation system with a symmetric
positive definite matrix, it is necessary to perform n iterations. Thus, to solve the system it is necessary to perform

T1=2n3+13n2 (9.12)

 11

operations, so the algorithm complexity is the order O(n3).
Let's demonstrate the conjugate gradient method by solving the following system of linear equations:

73
33

10

10

=+−
=−

xx
xx

 .

The matrix of this system is symmetric positive definite and, the conjugate gradient method may be applied. As
it was previously mentioned, for finding the exact decision of this system it is required to execute only two iterations
of a method.

On the first iteration it was computed that the gradient g1 = (-3,-7), the direction vector d1 = (3, 7), the step size
s1=0.439. Accordingly, the next approximation of the exact solution is x1 = (1.318, 3.076).

On the second iteration it was computed that the gradient g2 = (-2.121, 0.909), the direction vector d2 = (2.397,-
0.266) and the step size s2=0.284. The next approximation is x2 = (2, 3) and it coincides with the exact solution of
the system.

Figure 9.3 shows the sequence of the approximations to the exact solution, calculated by the conjugate gradient
method (as the initial approximation x0 the point (0,0) has been chosen)).

Figure 9.5. Iterations of the conjugate gradient method for solving linear equation system with

two unknowns

9.3.2. Parallel Algorithm
In the course of development of the parallel conjugate gradient method for solving a linear equation system, it

is first of all necessary to take into account the fact that method iterations are executed sequentially. So the most
reasonable approach is to parallelize the computations performed in the course of iteration execution.

The analysis of the relations (9.8)-(9.11) shows that the main computations performed in accordance with the
method consist in multiplying the matrix A by the vectors x and d. As a result, all the results of Section 7 may be
used in developing parallel computations.

Additional computations in (9.8)-(9.11), which are of lower complexity order, are various vector computational
operations (inner product, summation and subtraction, multiplication by a scalar). The implementation of such
computations should be, of course, matched with the selected parallel method of executing the operation of matrix-
vector multiplication. The general recommendations may be the following: if vectors are of small sizes, it is possible
to duplicate the vectors among the processors, if the linear equation system being solved is of great order, then the
vector block decomposition is more efficient.

9.3.3. Efficiency Analysis
To analyze the efficiency of parallel computations let us choose the parallel algorithm of matrix-vector

multiplication in case of the rowwise block-striped matrix partitioning and the duplication approach of all the
processed vectors.

The time complexity for the sequential conjugate gradient method was determined in (9.12).
Let us determine the execution time for the parallel implementation of this method. The computational

complexity of parallel matrix-vector multiplication operations in case of the rowwise block-striped matrix
decomposition is the following:

() ⎡ ⎤ (1221 −⋅= npnncalcTp) (see Section 7).

As a result, if all the computations on the vectors are duplicated, the total computational complexity for the parallel
variant of the method is the following:

 12

() ⎡ ⎤ ()()nnpnncalcT p 13122 +−⋅⋅= .

Taking into account the obtained estimations, we may express the speedup and efficiency using the following
relations:

⎡ ⎤ ()()nnpnn
nnS p 13122

132 23

+−⋅
+

= ,
⎡ ⎤ ()()nnpnnp

nnE p 13122
132 23

+−⋅⋅
+

= .

The analysis of these expressions shows that computational load balancing among the processor is
approximately uniform.

Let us specify the expressions used in the subsection. We will take into account the duration of the
computational operations performed and estimate the time complexity of the data communications among the
processors. As it can be noted, the information communications are appeared only in case of matrix-vector
multiplication. With regard to the results of Section 7, we may consider the communication complexity of the
parallel computations to be equal to the following:

() ⎡ ⎤()βα /)1)(/(log2 −+⋅= ppnwpncommTp ,

where α is the latency, β is the data transmission network bandwidth, and w is the size of the element of the data in
bytes.

In its final form the execution time for the parallel variant of the conjugate gradient method for solving linear
equation systems looks as follows:

⎡ ⎤ ()() ⎡ ⎤()[]βατ /)1)(/(log213122 −+⋅+⋅+−⋅⋅= ppnwpnnpnnTp , (9.13)

Where τ is the execution time of the basic computational operation.

9.3.4. Computational Experiment Results
The computational experiments for the estimation of the parallel variant of conjugate gradient method

efficiency for solving the systems of linear equations were carried out under the conditions specified in 7.6.5.
The results of the experiments are given in Table 9.3. The experiments were carried out on the computational

systems, which consist of 2, 4 and 8 processors.

Table 9.3. The results of the computational experiments for the parallel conjugate gradient method for solving
the linear equation systems

Parallel Algorithm
2 processors 4 processors 8 processors

Matrix
Size Serial Algorithm

Time Speed Up Time Speed Up Time Speed Up
500 0,5 0,4634 1,0787 0,4706 1,0623 1,3020 0,3840

1000 8,14 3,9207 2,0761 3,6354 2,2390 3,5092 2,3195
1500 31,391 17,9505 1,7487 14,4102 2,1783 20,2001 1,5539
2000 92,36 51,3204 1,7996 40,7451 2,2667 37,9319 2,4348
2500 170,549 125,3005 1,3611 85,0761 2,0046 87,2626 1,9544
3000 363,476 223,3364 1,6274 146,1308 2,4873 134,1359 2,7097

0

0,5

1

1,5

2

2,5

3

2 4 8

Number of Processors

Sp
ee

d
U

p

500

1000

1500

2000

2500

3000

 13

Figure 9.6. Speedup for the parallel conjugate gradient method for solving the linear equation
systems (rowwise block-striped matrix decomposition)

The comparison of the execution time and the theoretical estimation from (9.13) is given in Table 9.4
and in Figure 9. 6.

*
pT pT

Table 9.4. The comparison of the experimental and the theoretical execution time for the parallel conjugate
gradient method for solving linear equation systems

2 processors 4 processors 8 processors
Matrix Size

pT *
pT pT *

pT pT *
pT

500 1,3042 0,4634 0,6607 0,4706 0,3390 1,3020
1000 10,3713 3,9207 5,2194 3,6354 2,6435 3,5092
1500 34,9333 17,9505 17,5424 14,4102 8,8470 20,2001
2000 82,7220 51,3204 41,4954 40,7451 20,8822 37,9319
2500 161,4695 125,3005 80,9446 85,0761 40,6823 87,2626
3000 278,9077 223,3364 139,7560 146,1308 70,1801 134,1359

0

20

40

60

80

100

120

140

160

500 1000 1500 2000 2500 3000

Matrix Size

Ti
m

e Experiment

Model

Figure 9.7. Theoretical and experimental execution time with respect to matrix size (rowwise

block-striped matrix decomposition, 4 processors)

9.4. Summary
The Section is devoted to the problem of parallel computations for solving linear equation systems. The two

widely known algorithms are discussed in the Section – the Gauss method, as an example of direct algorithms for
solving the problem, and the iterative conjugate gradient method.

The parallel variant of the Gauss method (Subsection 9.2) is based on the rowwise block-striped matrix
distribution among the processors and the use of the cyclic scheme of row distribution. This scheme makes possible
to balance the computational load. To develop the parallel variant of the method a complete design cycle is carried
out in the Subsection. The basic computational subtasks are defined, information communications are analyzed, the
issues of scaling are discussed, efficiency characteristics are estimated, software implementation is suggested and
the results of the computational experiments are given. In general, according to the efficiency analysis described in
the Subsection, the use of the parallel variant of the Gauss method does not provide the speedup of computations
(see Figure 9.7), because of the big number of communication operations.

An important aspect in the consideration of the parallel variant of the conjugate gradient method (Subsection
9.3) is that the method of parallel computations for this method may be obtained through the previously considered
parallel algorithms of the executed computational operations (the operations of matrix-vector multiplication, scalar-
vector product, summation and subtraction of vectors). The approach chosen for the discussion consists in
parallelizing the most computationally time-consuming operation of matrix-vector multiplication, while all the
vector computations are duplicated on each processor in order to decrease the number of data communications.

 14

0

1

2

3

4

5

6

2 4 8

Number opf Processors

Sp
ee

d
U

p
Gauss Method

Conjugate Gradient Method

Figure 9.8. Speedup of the parallel algorithms for solving a linear equation system (4 processors, matrix

size 3000×3000)

9.5. References
The problem of numerical solving linear equation systems is broadly discussed. For training purposes we may

recommend the works by Kumar, et al. (1994) and Quinn (2004). The issues of parallel computations for solving
this type of problems are also discussed in Bertsekas and Tsitsiklis (1989), Dongarra, et al. (1999).

Blackford, et al. (1997) may be useful for considering some aspects of parallel software development. This
book describes the software library of numerical methods ScaLAPACK, which is well-known and widely used.

9.6. Discussions
1. What is a system of linear equations? What types of systems do you know? What methods may be used for

solving systems of various types?
2. What is the problem statement for solving linear equation systems?
3. What is the essence of the parallel Gauss method implementation?
4. What information communications are there among the basic subtasks in the parallel variant of Gauss

method?
5. What are the efficiency characteristics for the parallel variant of Gauss method?
6. What is the scheme of program implementation of the parallel variant of Gauss method?
7. What is the concept of the parallel implementation of the conjugate gradient method?
8. Which of the algorithms has the greater communication complexity?

9.7. Exercises
1. Analyze the efficiency of the parallel computations for the Gaussian elimination and the back substitution

stages of the Gauss method separately. At which stage is there the greater decrease of parallel efficiency?
2. Develop the parallel variant of the Gauss method based on the columnwise block-striped matrix

decomposition. Estimate theoretically the execution time of the algorithm. Carry out the computational experiments.
Compare the experimental results with the theoretical estimations obtained previously.

3. Develop the implementation of the parallel conjugate gradient method. Estimate theoretically the execution
time of the algorithm. Carry out the computational experiments. Compare the experimental results with the
theoretical estimations obtained previously.

4. Develop the parallel variant of the Jacobi and Seidel methods of solving linear equation systems (see, for
instance, Kumar, et al. (1994), Quinn (2004)). Estimate theoretically the execution time of the algorithm. Carry out
the computational experiments. Compare the experimental results with the theoretical estimations obtained
previously.

References

 15

Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V. (1999). Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools). Soc for Industrial & Applied Math.

Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J. J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, D. Walker, R.C. Whaley, K. (1997). Scalapack Users' Guide
(Software, Environments, Tools). Soc for Industrial & Applied Math.

Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Software Engineering.
Reading, MA: Addison-Wesley.

Kumar V., Grama, A., Gupta, A., Karypis, G. (1994). Introduction to Parallel Computing. - The
Benjamin/Cummings Publishing Company, Inc. (2nd edn., 2003)

Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, NY: McGraw-Hill.

 16

	Parallel Methods for Solving Linear Equation Systems
	Problem Setting
	The Gauss Algorithm
	Sequential Algorithm
	Gaussian Elimination
	Back Substitution

	Computation Decomposition
	Analysis of Information Dependencies
	Scaling and Distributing Subtasks among Processors
	Efficiency Analysis
	Software Implementation
	Computational Experiment Results

	The Conjugate Gradient Method
	Sequential Algorithm
	Parallel Algorithm
	Efficiency Analysis
	Computational Experiment Results

	Summary
	References
	Discussions
	Exercises

